Русский
Русский
English
Статистика
Реклама

Квантовая физика

Шкала Ландау умнейшие физики ХХ века

03.10.2020 20:01:59 | Автор: admin

Сольвеевские конгрессы серия международных конференций по обсуждению фундаментальных проблем физики и химии, проводимая в Брюсселе международными Сольвеевскими институтами физики и химии с 1911 года. На фото участники пятого Солвеевского конгресса слева направо нижний ряд: Ирвинг Ленгмюр (Нобелевская премия по химии, 1932 далее просто НПХ), Макс Планк (НПФ-1918), Мария Кюри (НПФ1903, НПХ-1911), Хенрик Лоренц (НПФ-1902), Альберт Эйнштейн (НПФ-1921), Поль Ланжевен, Шарль Гюи, Чарльз Вильсон (НПФ-1927), Оуэн Ричардсон (НПФ-1928). Средний ряд: Петер Дебай (НПХ-1936), Мартин Кнудсен, Уильям Брэгг (НПФ-1925), Хендрик Крамерс, Поль Дирак (НПФ-1933), Артур Комптон (НПФ-1927), Луи де Бройль (НПФ-1929), Макс Борн (НПФ-1954), Нильс Бор (НПФ-1922). Верхний ряд: Огюст Пикар (без нобелевки, зато с изобретением батискафа Трест, спустившегося на дно Мариинской впадины), Эмиль Анрио, Пауль Эренферст, Эдуард Герцен, Теофил де Дондер, Эрвин Шрёдингер (НПФ-1933), Жюль Эмиль Вершафельт, Вольфганг Паули (НПФ-1945), Вернер Гейзенберг (НПФ-1932), Ральф Фаулер, Леон Бриллюэн.

Лауреат Нобелевской премии советский физик Лев Ландау использовал логарифмическую шкалу для ранжирования лучших физиков XX века по их вкладу в науку. Лев Ландау (1908-1968) был одним из лучших физиков Советского Союза, внесший свой вклад в ядерную теорию, квантовую теорию поля и, среди прочих, астрофизику. В 1962 году он получил Нобелевскую премию по физике за разработку математической теории сверхтекучести. Ландау также написал великолепный учебник по физике, обучая целые поколения ученых. Блестящий ум, Ландау любил классифицировать все в своей жизни он оценивал людей по их интеллекту, красоте (физик известен своей любовью к блондинкам), вкладу в науку, тому, как они одевались и даже как разговаривали. Из этой статьи вы узнаете, кого выдающийся советский ученый считал лучшими физиками в истории человечества.

Сверхтекучесть способность вещества в особом состоянии (квантовой жидкости), возникающем при температурах, близких к абсолютному нулю, протекать через узкие щели и капилляры без трения.

Шкала Ландау

Одна из самых известных классификаций Ландау это его рейтинг величайших физиков ХХ века. Эта шкала логарифмическая, то есть вклад ученых, отнесенных к первому классу, в десять раз больше, чем вклад физиков, отнесенных ко второму классу, и так далее. Другими словами, чем больше число, тем меньший вклад, по мнению Ландау, внес тот или иной физик в науку.

Альберт Эйнштейн Ранг 0,5

Эйнштейн, создатель Общей теории относительности, по мнению советского ученого, принадлежит к своему собственному классу. Ландау считал себя величайшим умом среди весьма впечатляющей группы ученых, которые переосмыслили современную физику. Ландау, однако, считал, что если бы этот список был расширен до ученых предыдущих столетий, Исаак Ньютон отец классической физики, также присоединился бы к Эйнштейну, занимая почетную первую строчку в этой логарифмической шкале.

физик-теоретик, один из основателей современной теоретической физики

Вам будет интересно: Почему квантовая физика сродни магии?

Ранг 1

Группа в этом классе самых умных физиков включала лучшие умы, которые разработали теорию квантовой механики.

Вернер Гейзенберг (1901 — 1976) — немецкий физик-теоретик, получивший известность в поп-культуре благодаря альтер-эго Уолтера Уайта в фильме «Во все тяжкие». Он известен принципом неопределенности Гейзенберга, и его Нобелевская премия 1932 года категорически утверждает, что это было не что иное, как «создание квантовой механики».

Немецкий физик-теоретик, один из создателей квантовой механики, лауреат Нобелевской премии по физике (1932), член ряда академий и научных обществ мира.

Эрвин Шредингер (1887 — 1961) — австрийско-ирландский физик, подаривший нам печально известный мысленный эксперимент «кошка Шредингера» и других магов разума из квантовой механики. Уравнение Шредингера нобелевского лауреата вычисляет волновую функцию системы и то, как она изменяется с течением времени.

Эрвин Шрёдингер один из основоположников квантовой механики. Его уравнение волновой функции стало образцом проявления нестандартного мышления при изучении проблем микромира.

Еще больше увлекательных статей о выдающихся ученых и последних научных открытиях читайте на нашем канале в Google News

Поль Дирак (1902-1984) еще один гигант квантовой механики, этот английский физик-теоретик разделил Нобелевскую премию 1933 года с Эрвином Шредингером «за открытие новых продуктивных форм атомной теории.»

Нильс Бор (1885 — 1962) датский физик, который сделал фундаментальные дополнения к тому, что мы знаем об атомной структуре и квантовой теории, что привело к его Нобелевской премии по физике 1922 года.

Шатьендранат Бозе (1894 — 1974) индийский математик и физик, известен своими работами по квантовой механике. Один из создателей квантовой статистики, теории конденсата Бозе Эйнштейна. Бозонные частицы названы в его честь.

Шатьендранат один из членов-основателей (1935)[6] Индийской национальной академии наук

Юджин Вигнер (1902 — 1995) — венгерско-американский физик-теоретик, получивший в 1963 году Нобелевскую премию по физике за работы по теории атомного ядра и элементарных частиц. Как известно, он принял участие во встрече с Лео Силардом и Альбертом Эйнштейном, которая привела к написанию ими письма президенту Франклину Д. Рузвельту, результатом которого стало создание Манхэттенского проекта.

Луи де Бройль (1892-1987) — французский теоретик, внесший ключевой вклад в квантовую теорию. Он предложил волновую природу электронов, предположив, что вся материя обладает волновыми свойствами пример концепции корпускулярно-волнового дуализма, Центральной в теории квантовой механики.

Энрико Ферми (1901 — 1954) — американский физик, которого называют «архитектором ядерного века», а также «архитектором атомной бомбы». Он также создал первый в мире ядерный реактор и получил Нобелевскую премию по физике 1938 года за работу по индуцированной радиоактивности и за открытие трансурановых элементов.

Итальнский физик Энрико Ферми один из отцов-основателей атомной бомбы

Если вам интересны новости науки и технологий, подпишитесь на наш канал в Яндекс.Дзен. Там вы найдете материалы, которые не были опубликованы на сайте!

Вольфганг Паули (1900-1958) — австрийский теоретик-теоретик, известный как один из пионеров квантовой физики. В 1945 году он получил Нобелевскую премию по физике за открытие нового закона природы принципа исключения (он же принцип Паули) и развитие теории спина.

Макс Планк (1858-1947) — немецкий физик-теоретик, получивший в 1918 году Нобелевскую премию по физике за кванты энергии. Он был создателем квантовой теории, физики атомных и субатомных процессов.

Ранг 2.5

Ландау оставил после себя множество достижений это и многотомные научные труды по физике, и сотни метких афоризмов, и знаменитая теория счастья.

Ранг 2.5 так Ландау первоначально оценивал себя. Эта скромность вызвана тем, что Ландау полагал, что не произвел никаких фундаментальных достижений. Позже, по мере роста собственных достижений советский ученый повысил свой ранг до 1,5.

Подробнее..

Тайны квантовой механики что такое квантовая запутанность?

29.10.2020 02:01:32 | Автор: admin

Если нагреть газ в пробирке и посмотреть на исходящий от него свет через призму, вы увидите непересекающиеся вертикальные линии

Около 100 лет назад ученые впервые задумались о природе некоторых необычных свойств света. Например, света, исходящего от газов, когда их нагревают в пробирке. Если посмотреть на этот свет сквозь призму, можно заметить кое-что необычное. Не спектр, в котором цвета плавно переходят один в другой, отражаясь в хрустальном бокале, а отчетливые линии, цвета которых не смешиваются, как в радуге. Речь идет о вертикальных лучах света, похожих на карандаши каждый своего цвета. Однако объяснить столь странное свойство света ученые не могли. Поиски ответов безуспешно продолжались, пока физик Нильс Бор в начале ХХ века не выдвинул самую невероятную и фантастическую гипотезу. Бор был убежден, что разгадка отчетливых линий кроется в самом сердце материи структуре атома.

Фантастическая гипотеза

По мнению ученого атомы напоминают крошечные модели Солнечной системы, так как электроны вращаются вокруг ядра, подобно планетам. Но электроны, в отличие от планет, двигаются по одной определенной орбите и ни по какой другой. Бор утверждал, что когда атом нагревается, электроны приходят в движение и перескакивают с одной орбиты на другую. При этом, каждый скачок сопровождается выбросом энергии в форме света с определенной длиной волны. Вот откуда взялись те странные вертикальные линии и понятие «квантовый скачок».

В документальном фильме National Geographic о квантовой теории, физик Брайан Грин рассказывает об удивительных свойствах квантового скачка, которые заключаются в том, что электрон перемещается с одной орбиты сразу на другую, будто бы не пересекая пространство между ними. Как если бы Земля в одно мгновенье поменялась орбитами с Марсом или Юпитером. Бор считал, что из-за странных свойств электронов в атоме, они излучают энергию определенными, неделимыми порциями, которые называются кванты. Именно поэтому электроны могут двигаться строго по определенным орбитам и могут находиться либо в одной точке, либо в другой, но никак не посередине. В повседневной жизни мы не сталкиваемся ни с чем подобным.

Если бы бейсбольный мяч оказался в двух местах одновременно, мы могли бы поверить, что нас обманывает волшебник. Но в квантовой механике наличие частицы в двух местах одновременно это именно то, что заставляет нас считать эксперимент истинным.

При нагреве атомов электроны начинают перескакивать с одной орбиты на другую.

Каким бы невероятным ни казалось предположение Бора, физики довольно быстро нашли большое количество доказательств в пользу его теории электроны действительно ведут себя по совершенно иным законам, нежели планеты Солнечной системы или шарики для пинг-понга. Открытие Бора и его коллег, однако, противоречило общеизвестным законам физики и вскоре привело к столкновению с идеями, высказанными Альбертом Эйнштейном.

Квантовая запутанность

Эйнштейн не мог смириться с неопределенностью Вселенной, вытекающей из квантовой механики. Физик считал, что объект существует не только когда за ним наблюдают (как утверждал Нильс Бор), но и все остальное время. Ученый писал: «Мне хочется верить, что Луна светит даже когда я на нее не смотрю.» Сама мысль о том, что реальность Вселенной определяется когда мы открываем и закрываем глаза казалась ему немыслимой. По мнению Эйнштейна квантовой теории не хватало чего-то, что описало бы все свойства частиц, в том числе их местонахождение даже в тот момент, когда за ними не наблюдают. И в 1935 году Эйнштейну показалось, что он нашел слабое место квантовой механики. Это было невероятно странное явление, противоречащее всем логическим представлениям о Вселенной квантовая запутанность.

Квантовая запутанность это теоретическое предположение вытекающее из уравнений квантовой механики, согласно которому две частицы могут запутаться, если находятся довольно близко друг к другу. Их свойства при этом становятся взаимосвязанными.

Но даже если разделить эти частицы и отправить в разные концы света, как предлагает квантовая механика, они все равно могут остаться запутанными и неразрывно связанными. Эйнштейну такая связь между частицами казалась невозможной, он так ее и назвал «сверхъестественная связь на расстоянии». Ученый допускал, что запутанные частицы могут существовать, но считал, что никакой «сверхъестественной связи на расстоянии» нет. Напротив, все предопределено задолго до момента измерения.

Допустим, кто-то взял пару перчаток, разделил их и положил каждую в отдельный чемодан. Затем один чемодан отправили вам, а второй в Антарктиду. До того момента, пока чемоданы закрыты, вы не знаете, какая из перчаток там лежит. Но открыв чемодан и обнаружив в нем левую перчатку, мы со 100% уверенностью узнаем, что в чемодане в Антарктиде лежит правая перчатка, даже если в него никто не заглядывал.

Нильс Бор, в свою очередь, полагался на уравнения, доказывающие, что частицы ведут себя как два колеса, которые могут мгновенно связать случайные результаты своего вращения, даже находясь на огромном расстоянии друг от друга. Так кто же прав?

Определить, действительно ли между запутанными частицами существует «сверхъестественная связь» как между вращающимися колесами, или же никакой связи нет и свойства частиц предопределены заранее, как в случае с парой перчаток, удалось физику Джону Белл. С помощью сложных математических вычислений Белл показал, что если сверхъестественной связи нет, то квантовая механика неверна. Однако физик-теоретик также доказал, что вопрос можно решить, построив машину, которая создавала и сравнивала бы много пар запутанных частиц.

Основываясь на инструкциях Белла физик, специалист по квантовой механике Джон Клаузер собрал машину, способную проделывать эту работу. Машина Клаузера могла измерять тысячи пар запутанных частиц и сравнивать их по очень многим параметрам. Полученные результаты заставили ученого думать, что он допустил ошибку. Вскоре французский физик Ален Аспе подобрался к самой сути спора Эйнштейна и Бора.

Ален Аспе французский физик, специалист по квантовой оптике, теории скрытых параметров и квантовой запутанности.

В опыте Аспе измерение одной частицы могло прямо повлиять на другую только в случае, если сигнал от первой частицы ко второй прошел бы со скоростью, превышающей скорость света. Что, как мы знаем, невозможно. Таким образом оставалось только одной объяснение сверхъестественная связь. Более того, проведенные эксперименты доказали, что математическая основа квантовой механики верна.

Запутанность квантовых состояний это реальность.

Выходит, квантовые частицы могут быть связаны несмотря на огромные расстояния, а измерение одной частицы действительно может повлиять на ее далекую пару, как если бы пространства между ними никогда не существовало. Но ответить на вопрос о том как работает эта связь сегодня не может никто.

Квантовая запутанность частиц также не исключает того факта, что когда-нибудь телепортация станет реальностью. Так, ученые уже сегодня телепортируют сотни частиц, о чем подробнее писала моя коллега Дарья Елецкая. А как вы думаете, удастся ли ученым создать единую теорию квантовой гравитации? Ответ будем ждать в комментариях к этой статье, а также в нашем Telegram-чате.

Подробнее..

Может ли квантовая механика объяснить существование пространства-времени?

04.11.2020 22:18:48 | Автор: admin

Ученые ищут ответ на вопрос о том из чего состоит пространство-время уже много лет, но пока безуспешно

Квантовая механика странная. Для нас, существ, не способных видеть микромир не вооруженным глазом, представить себе как все устроено на уровне атомов довольно сложно. Между тем, согласно атомной теории, все во Вселенной состоит из мельчайших частиц атомов, скрепленных друг с другом электрическими и ядерными силами. Физические эксперименты, проведенные в ХХ веке показали, что атомы можно дробить на еще более мелкие, субатомные частицы. В 1911 году британский физик Эрнест Резерфорд провел ряд экспериментов и пришел к выводу, что атом похож на Солнечную систему, только по орбитам вместо планет вокруг него вращаются электроны. Два года спустя, взяв за основу модель Резерфорда, физик Нильс Бор изобрел первую квантовую теорию атома и в этой области теоретической физики все стало еще сложнее. Но если квантовая механика объясняет как взаимодействуют между собой мельчайшие частицы, может ли она объяснить существование пространства-времени?

Что такое пространство-время?

Уверена, большинство из нас воспринимают пространственно-временной континуум как нечто, само собой разумеющееся. И в этом нет ничего удивительного, ведь не каждый день мы размышляем над чем-то подобным. Но если хорошенько задуматься, то окажется, что ответить на вопрос о том, что представляет собой пространство-время не так уж просто.

Начнем с того, что в соотвествии с теорией относительности (ОТО) Эйнштейна, Вселенная имеет три пространственных измерения и одно временное измерение. При этом все четыре измерения органически связаны в единое целое, являясь почти равноправными и в определенных рамках и условиях способными переходить друг в друга. В свою очередь пространственно-временной континуум или пространство-время это физическая модель, дополняющая пространство временным измерением.

Пространство-время непрерывно.

В рамках общей теории относительности пространство-время также имеет единую динамическую природу, а его взаимодействие со всеми остальными физическими объектами и есть гравитация.

В рамках ОТО теория гравитации и есть теория пространства-времени, которое не является плоским и способно менять свою кривизну.

Из ОТО также следует, что гравитация является результатом массы, такой как планета или звезда, искажающая геометрию пространства-времени. Космический аппарат NASA Gravity Probe, запущенный в 2004 году, точно измерил, насколько гравитация Земли искривляет пространство-время вокруг нее, в конечном итоге подтвердив расчеты Эйнштейна. Но откуда взялось пространство-время? Ответ, как это ни странно, может скрывать в себе квантовая механика.

Квантовая механика и теория гравитации

Как пишет портал Astronomy.com, сегодня физики стоят на пороге революции, которая может привести к пересмотру всего что мы знаем о пространстве-времени и, возможно, к объяснению того, почему квантовая механика кажется такой странной.

«Пространство-время и гравитация должны в конечном итоге возникнуть из чего-то другого», пишет физик Брайан Свингл из Университета Мэриленда в статье, опубликованной в журнале Annual Review of Condensed Matter Physics. Иначе трудно понять, как гравитация Эйнштейна и математика квантовой механики могут примирить их давнюю несовместимость.

Квантовая механика противоречит ОТО

Взгляд Эйнштейна на гравитацию как проявление геометрии пространства-времени был чрезвычайно успешным. Но то же самое относится и к квантовой механике, которая с безошибочной точностью описывает махинации материи и энергии на атомном уровне. Однако попытки найти математическое решение, которое совместило бы квантовую странность с геометрической гравитацией, наталкивались на серьезные технические и концептуальные препятствия.

Хотите всегда быть в курсе последних новостей из мира популярной науки и высоких технологий? Подписывайтесь на наш новостной канал в Google News чтобы не пропустить ничего интересного.

По крайней мере, так было долгое время при попытках понять обычное пространство-время. Возможный ответ пришел из теоретического изучения альтернативных геометрий пространства-времени, мыслимых в принципе, но обладающих необычными свойствами. Одна из таких альтернатив известна как антидеситтеровское пространство, которое имеет тенденцию сжиматься само по себе, а не расширяться, как это делает Вселенная. Для жизни, безусловно, это было бы не самое приятное место. Но как лаборатория для изучения теорий квантовой гравитации, оно может многое предложить и даже стать ключом к квантовым процессам, которые могут быть ответственны за создание пространства-времени.

Что такое антидеситтеровское пространство?

Исследования антидеситтеровское пространства предполагают, например, что математика, описывающая гравитацию (то есть геометрию пространства-времени), может быть эквивалентна математике квантовой физики в пространстве с одним меньшим измерением.

Представьте себе голограмму плоскую двумерную поверхность, которая включает в себя трехмерное изображение. Подобным же образом, возможно, четырехмерная геометрия пространства-времени может быть закодирована в математике квантовой физики, работающей в трехмерном пространстве. Или, может быть, нужно больше измерений а вот сколько измерений требуется, являются частью проблемы, которую нужно решить.

Квантовая запутанность одна из сложнейших для понимания научных теорий

Во всяком случае, исследования в этом направлении открыли удивительную возможность: само пространство-время может быть порождено квантовой физикой, в частности загадочным явлением, известным как квантовая запутанность. Подробно о том, что представляет собой квантовая запутанность я рассказывала в этой статье.

Если попробовать объяснить более-менее простыми словами, то квантовая запутанность это сверхъестественная связь между частицами, разделенными огромными расстояниями. Испускаемые из общего источника, такие частицы остаются запутанными независимо от того, как далеко они друг от друга находятся. Если вы измерите свойство (например, спин) одной частицы, то узнаете, каким будет результат измерения спина другой частицы. Но до измерения эти свойства еще не определены, что противоречит здравому смыслу и подтверждается многими экспериментами. Кажется, что измерение в одном месте определяет, каким будет измерение в другом отдаленном месте.

Вам будет интересно: Почему квантовая физика сродни магии?

Энергичные усилия нескольких физиков подарили миру теоретические доказательства того, что сети запутанных квантовых состояний плетут ткань пространства-времени. Эти квантовые состояния часто описываются как «кубиты» биты квантовой информации. Запутанные кубиты создают сети с геометрией в пространстве с дополнительным измерением, выходящим за пределы числа измерений, в которых находятся кубиты. Таким образом, квантовую физику кубитов можно приравнять к геометрии пространства с дополнительным измерением.

Примечательно, что геометрия, созданная запутанными кубитами, может очень хорошо подчиняться уравнениям из общей теории относительности Эйнштейна, которые описывают движение под действием гравитации по крайней мере, последние исследования указывают в этом направлении.

Подводя итог отмечу, что никто точно не знает, какие квантовые процессы в реальном мире ответственны за соткание ткани пространства-времени. Возможно, некоторые допущения, сделанные в уже имеющихся расчетах, окажутся ошибочными. Но вполне возможно, что физика стоит на пороге проникновения в основы природы глубже, чем когда-либо. В существование, содержащее ранее неизвестные измерения пространства и времени.

Подробнее..

Существуют ли доказательства того, что мы живем в Мультивселенной?

30.12.2020 16:10:03 | Автор: admin

Если параллельные реальности существуют, то как сильно отличаются от нашей?

Как думаете, существует ли параллельная вселенная? Или их много? Несмотря на то, что разговоры о параллельных мирах излюбленная тема научных фантастов, теоретическая физика допускает их существование. Так, выдающийся физик-теоретик, легенда космологии Стивен Хокинг считал, что попасть в иную реальность можно сквозь черную дыру. Еще один известный ученый Митио Каку предлагает несколько иной взгляд на Мультивселенную — с точки зрения квантовой механики, согласно законам которой одна и та же частица может существовать в двух местах одновременно. Более того, Каку отмечает, что все больше ученых сегодня не верят в существование одной-единственной Вселенной, считая подобную точку зрения лишь одной из многих теорий, способных объяснить устройство нашего мира. Но есть ли хоть малейшие доказательства существования множества миров или наоборот, их отсутствия? Давайте разбираться.

Другой мир

Хочу сразу предупредить читателя — все разговоры о параллельных мирах так или иначе упираются в законы, описывающие как элементарные частицы (протоны, фотоны, электроны, кварки и пр.) взаимодействуют между собой. А все что касается квантовой физики, и я не преувеличиваю, очень и очень сложно. Причем иногда до такой степени, что сами ученые открыто признаются в том, что не понимают ее. Но если умнейшие представители рода человеческого не могут с уверенностью сказать как устроена Вселенная на атомном уровне, что же говорить обо всех остальных, обычных жителях планеты? Можно ли вообще разобраться в том, сколько существует альтернативных реальностей?

Начнем с того, что современная наука пока не может ни доказать, ни опровергнуть существование Мультивселенной. А это означает, что тонкую грань между наукой и научной фантастикой бывает сложно заметить, но мы с вами не будем выходить за пределы физических теорий.

Кто знает, может быть прямо сейчас вы из параллельной вселенной тоже читаете эту статью.

Итак, в интервью Russia Today доктор Митио Каку утверждает, что теоретическая физика всерьез рассматривает вероятность того, что наша Вселенная может сосуществовать с другими мирами. Так, если Мультивселенная реальна, она может объяснить многие законы природы. Более того, существование параллельных вселенных могло бы объяснить появление жизни на нашей планете — только вспомните череду случайных событий, позволивших нашим далеким предкам выйти из воды на сушу. Со стороны может даже показаться, что Вселенная существует для того лишь, чтобы на свет появились мы с вами. Но означает ли это, что где-то в космосе есть Бог? Не обязательно. Каку отмечает, что сам факт нашего существования может указывать на то, что в других вселенных у нашей планеты не было бы Луны, а энергии Солнца могло оказаться недостаточно для поддержания на Земле температуры для возникновения жизни.

Еще больше новостей из мира популярной науки и высоких технологий читайте на нашем канале в Google News.

Где доказательства?

Прошлой весной репортаж с крупнейшего в мире нейтринного телескопа раскинувшейся сетки детекторов, вплетенных в антарктический лед, совпал со вспышкой гиперболических заголовков в мировых СМИ. Утверждалось, что ученые наконец обнаружили доказательства существования параллельного мира. Правда, очень необычного — исследователи утверждали, что время в этом мире идет в обратную сторону, а Большой взрыв представляет собой конец, а не начало. Хотя начинать поиски своего стареющего двойника пока слишком рано, физики предположили существование такой Вселенной не просто так. Дело в том, что они поймали странные сигналы из космоса, которые не поддаются простому объяснению.

Шесть лет назад в ходе эксперимента в Антарктике, исследователи обнаружили странные частицы, которые могут свидетельствовать о существовании параллельной реальности. Устройство, называемое антарктической импульсной переходной антенной (ANITA), улавливает радиосигналы, возникающие при столкновении высокоэнергетических частиц из глубокого космоса с нашей атмосферой. Некоторые волны скользят по земле, прежде чем их зафиксирует ANITA, а другие отскакивают ото льда.

Гигантский воздушный шар, который нес на себе набор антенн ANITA над Антарктидой.

В основе этой тайны лежат нейтрино: призрачные, высокоэнергетические частицы, которые могут проходить сквозь почти любой материал невредимыми, но могут производить предательские радиоимпульсы, которые улавливает ANITA. Чтобы продолжить изучение необычных сигналов, физики обратились к IceCube — нейтринному телескопу, состоящему из длинных цепочек детекторов, расположенных вблизи южного полюса. Нейтрино, проходя сквозь лед, может производить другие частицы, которые испускают крошечные вспышки света, которые могут обнаружить датчики IceCube.

Читайте также: Если существуют другие вселенные, то сталкиваются ли они с нашей?

Новые данные, опубликованные в марте в журнале The Astrophysical Journal, означают, что ученым придется продолжать искать менее очевидные объяснения. Некоторые предположили, что аномалии возникли из-за радиоволн, отражающихся от пещер или погребенных во льду озер. Другие теоретики предлагали более экзотические идеи, например о том, что тяжелые, высокоэнергетические частицы в соответствии с данными ANITA могут описывать одного кандидата на темную материю-таинственное вещество, которое, как полагают исследователи, составляет 85% всей материи во Вселенной. И, наконец, третьи выдвинули гипотезу, согласно которой экзотические частицы соответствуют существующей теоретической модели параллельной вселенной симметричной нашей, но населенной антиматерией и движущейся в обратном направлении.

Согласитесь, все три предположения как минимум интригуют и буквально заставляют нас представить то, какой Вселенная может быть на самом деле. Так или иначе, на сегодняшний день нет 100% доказательств того, что частицы, которые уловила ANITA, действительно исходят из параллельного мира, в котором вообще все наоборот. Исследователи, работающие над проектом отмечают, что впереди еще очень много работы и перепроверки данных, так что остается только ждать результатов будущих открытий. Ну а мы, в свою очередь, поможем вам скорость время — так, летом я рассказывала об удивительном взгляде на Вселенную Нобелевского лауреата Сэра Роджера Пенроуза, рекомендую к прочтению.

Подробнее..

Физики доказали существование анионов третьего царства частиц

06.01.2021 22:16:46 | Автор: admin

Законы квантовой механики описывают поведение элементарных частиц.

2020 год запомнится миру не только как год, побивший все мыслимые и немыслимые температурные рекорды, но и как период человеческой истории, в ходе которого было доказано существование третьего царства частиц под названием «анионы», которые существуют в двух измерениях одновременно. Вообще, говоря о физике частиц, необходимо отметить, что до недавнего времени их существовало всего две категории или царства бозоны и фермионы. Критерий деления элементарных частиц на два лагеря это значение спина, квантового числа, которое характеризует собственный момент импульса частицы. Иными словами, если спин отдельно взятой частицы определяется целым числом перед вами бозон, а если полуцелым фермион. В этом году исследователи обнаружили первые признаки существования третьего царства частиц анионов, поведение которых не похоже на поведение ни бозонов, ни фермионов. Рассказываем что такое анионы и почему их открытие имеет огромное значение для современной физики.

Что такое «анионы»?

Каждая последняя частица во Вселенной от космических лучей до кварков является либо фермионом, либо бозоном. Эти категории делят строительные блоки Вселенной на два различных царства. В уходящем 2020 году исследователи обнаружили первые признаки существования третьего царства частиц анионов. Интересно что анионы не ведут себя ни как фермионы, ни как бозоны; вместо этого их поведение находится где-то посередине.

В статье, опубликованной летом 2020 года в журнале Science, физики обнаружили первые экспериментальные доказательства того, что эти частицы не вписываются ни в одно из известных физикам царств. «Раньше у нас были бозоны и фермионы, а теперь у нас есть это третье царство элементарных частиц», сказал Фрэнк Вильчек, лауреат Нобелевской премии по физике из Массачусетского технологического института в интервью изданию Quanta Magazine.

Так как законы квантовой механики, описывающие поведение элементарных частиц, сильно отличаются от известных законов классической физики, понять их довольно трудно. Чтобы сделать это, исследователи предлагают представить себе… рисунок петель. Все потому, что когда анионы сплетены, один из них как бы «обвивается» вокруг другого, изменяя квантовые состояния.

В ходе научного исследования ученые доказали, что анионы принадлежат к отдельному классу элементарных частиц.

Еще больше увлекательных статей о законах квантовой механики и последних открытиях в области физики читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте.

Итак, представьте себе две неразличимые частицы, похожие на электроны. Возьмите одну, а затем обмотайте ее вокруг другой так, чтобы она вернулась туда, откуда начала свой путь. На первый взгляд может показаться что ничего не изменилось. И действительно, на математическом языке квантовой механики две волновые функции, описывающие начальное и конечное состояния, должны быть либо равны, либо иметь отклонение в одну единицу. (В квантовой механике вы вычисляете вероятность того, что наблюдаете, возведя в квадрат волновую функцию, так что этот коэффициент 1 вымывается).

Если волновые функции частицы идентичны, то перед вами бозоны. А если они отклоняются на 1 коэффициент, то вы смотрите на фермионы. И хотя вывод, полученный в ходе нового исследования может показаться чисто математическим упражнением, он имеет серьезные последствия для современной физики.

Три царства элементарных частиц

Исследователи также отмечают, что фермионы это антисоциальные члены мира частиц, так как никогда не занимают одно и то же квантовое состояние. Из-за этого электроны, которые относятся к классу фермионов, попадают в различные атомные оболочки вокруг самого атома. Из этого простого явления возникает большая часть пространства в атоме удивительное разнообразие периодической системы и вся химия.

Читайте также: Ученые приблизились к пониманию того, почему существует Вселенная

Бозоны, с другой стороны, являются стадными частицами, обладающими счастливой способностью объединяться и разделять одно и то же квантовое состояние. Таким образом, фотоны, которые относятся к классу бозонов, могут проходить друг через друга, позволяя световым лучам беспрепятственно перемещаться, а не рассеиваться.

Бозон Хиггса это событие, вытекающие из столкновений между протонами в Большом адронном коллайдере CERN. При столкновении в центре частица распадается на два фотона (пунктирные желтые и зеленые линии)

Но что произойдет, если закольцевать одну квантовую частицу вокруг другой? Вернется ли она в исходное квантовое состояние? Чтобы понять произойдет это или нет, необходимо углубиться в краткий курс топологии математического изучения форм. Считается, что две формы топологически эквивалентны, если одна может быть преобразована в другую без каких-либо дополнительных действий (склеивания или разделения). Пончик и кофейная кружка, как гласит старая поговорка, топологически эквивалентны, потому что одно может быть плавно и непрерывно сформировано в другое.

Рассмотрим петлю, которую мы сделали, когда вращали одну частицу вокруг другой. В трех измерениях эту петлю можно сжать до точки. Топологически это выглядит так, как если бы частица вообще не двигалась. Однако в двух измерениях петля не может сжиматься, она застревает на другой частице. Это означает, что сжать петлю в процессе не получится. Из-за этого ограничения обнаруженного только в двух измерениях петля одной частицы вокруг другой не эквивалентна пребыванию частицы в том же самом месте. Да, голова идет кругом. Вот почему физикам понадобился третий класс частиц анионы. Их волновые функции не ограничены двумя решениями, определяющими фермионы и бозоны и эти частицы не являются ни тем ни другим.

«Топологический аргумент стал первым признаком существования анионов», считает один из авторов научной работы Гвендаль Фев, физик из Сорбоннского университета в Париже. Когда электроны ограничены в движении в двух измерениях, они охлаждаются почти до абсолютного нуля, подвергаясь воздействию сильного магнитного поля.

Исследователи построили в лаборатории маленький адронный коллайдер чтобы доказать существование анионов.

В начале 1980-х годов физики впервые использовали эти условия для наблюдения «дробного квантового эффекта Холла», при котором электроны собираются вместе, чтобы создать так называемые квазичастицы, имеющие долю заряда одного электрона. В 1984 году в основополагающей двухстраничной работе Фрэнка Вильчека, Даниэля Ароваса и Джона Роберта Шриффера было показано, что эти квазичастицы могут быть любыми. Но ученые никогда не наблюдали подобного поведения квазичастиц, а значит не могли доказать, что анионы не похожи ни на фермионы, ни на бозоны.

Это интересно: Почему квантовая физика сродни магии?

Вот почему новое исследование революционно физика наконец удалось доказать, что анионы ведут себя как нечто среднее между поведением бозонов и фермионов. Интересно и то, что в 2016 году три физика описали экспериментальную установку, напоминающую крошечный адронный коллайдер в двух измерениях. Фев и его коллеги построили нечто подобное чтобы измерить флуктуации токов в коллайдере.

Им удалось показать, что поведение анионов в точности соответствует теоретическим предсказаниям. В общем и целом авторы научной работы надеятся, что запутанные анионы смогут сыграть важную роль в создании квантовых компьютеров. Подробнее о том, что такое квантовый компьютер и как он работает, читайте в материале моего коллеги Рамиса Ганиева.

Подробнее..

Физики доказали существование энионов третьего царства частиц

07.01.2021 02:18:15 | Автор: admin

Законы квантовой механики описывают поведение элементарных частиц.

2020 год запомнится миру не только как год, побивший все мыслимые и немыслимые температурные рекорды, но и как период человеческой истории, в ходе которого было доказано существование третьего царства частиц под названием «энионы», которые существуют в двух измерениях одновременно. Вообще, говоря о физике частиц, необходимо отметить, что до недавнего времени их существовало всего две категории или царства бозоны и фермионы. Критерий деления элементарных частиц на два лагеря это значение спина, квантового числа, которое характеризует собственный момент импульса частицы. Иными словами, если спин отдельно взятой частицы определяется целым числом перед вами бозон, а если полуцелым фермион. В этом году исследователи обнаружили первые признаки существования третьего царства частиц энионов, поведение которых не похоже на поведение ни бозонов, ни фермионов. Рассказываем что такое энионы и почему их открытие имеет огромное значение для современной физики.

Что такое «энионы»?

Каждая последняя частица во Вселенной от космических лучей до кварков является либо фермионом, либо бозоном. Эти категории делят строительные блоки Вселенной на два различных царства. В уходящем 2020 году исследователи обнаружили первые признаки существования третьего царства частиц энионов. Интересно что энионы не ведут себя ни как фермионы, ни как бозоны; вместо этого их поведение находится где-то посередине.

В статье, опубликованной летом 2020 года в журнале Science, физики обнаружили первые экспериментальные доказательства того, что эти частицы не вписываются ни в одно из известных физикам царств. «Раньше у нас были бозоны и фермионы, а теперь у нас есть это третье царство элементарных частиц», сказал Фрэнк Вильчек, лауреат Нобелевской премии по физике из Массачусетского технологического института в интервью изданию Quanta Magazine.

Так как законы квантовой механики, описывающие поведение элементарных частиц, сильно отличаются от известных законов классической физики, понять их довольно трудно. Чтобы сделать это, исследователи предлагают представить себе… рисунок петель. Все потому, что когда энионы сплетены, один из них как бы «обвивается» вокруг другого, изменяя квантовые состояния.

В ходе научного исследования ученые доказали, что энионы принадлежат к отдельному классу элементарных частиц.

Еще больше увлекательных статей о законах квантовой механики и последних открытиях в области физики читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте.

Итак, представьте себе две неразличимые частицы, похожие на электроны. Возьмите одну, а затем обмотайте ее вокруг другой так, чтобы она вернулась туда, откуда начала свой путь. На первый взгляд может показаться что ничего не изменилось. И действительно, на математическом языке квантовой механики две волновые функции, описывающие начальное и конечное состояния, должны быть либо равны, либо иметь отклонение в одну единицу. (В квантовой механике вы вычисляете вероятность того, что наблюдаете, возведя в квадрат волновую функцию, так что этот коэффициент 1 вымывается).

Если волновые функции частицы идентичны, то перед вами бозоны. А если они отклоняются на 1 коэффициент, то вы смотрите на фермионы. И хотя вывод, полученный в ходе нового исследования может показаться чисто математическим упражнением, он имеет серьезные последствия для современной физики.

Три царства элементарных частиц

Исследователи также отмечают, что фермионы это антисоциальные члены мира частиц, так как никогда не занимают одно и то же квантовое состояние. Из-за этого электроны, которые относятся к классу фермионов, попадают в различные атомные оболочки вокруг самого атома. Из этого простого явления возникает большая часть пространства в атоме удивительное разнообразие периодической системы и вся химия.

Читайте также: Ученые приблизились к пониманию того, почему существует Вселенная

Бозоны, с другой стороны, являются стадными частицами, обладающими счастливой способностью объединяться и разделять одно и то же квантовое состояние. Таким образом, фотоны, которые относятся к классу бозонов, могут проходить друг через друга, позволяя световым лучам беспрепятственно перемещаться, а не рассеиваться.

Бозон Хиггса это событие, вытекающие из столкновений между протонами в Большом адронном коллайдере CERN. При столкновении в центре частица распадается на два фотона (пунктирные желтые и зеленые линии)

Но что произойдет, если закольцевать одну квантовую частицу вокруг другой? Вернется ли она в исходное квантовое состояние? Чтобы понять произойдет это или нет, необходимо углубиться в краткий курс топологии математического изучения форм. Считается, что две формы топологически эквивалентны, если одна может быть преобразована в другую без каких-либо дополнительных действий (склеивания или разделения). Пончик и кофейная кружка, как гласит старая поговорка, топологически эквивалентны, потому что одно может быть плавно и непрерывно сформировано в другое.

Рассмотрим петлю, которую мы сделали, когда вращали одну частицу вокруг другой. В трех измерениях эту петлю можно сжать до точки. Топологически это выглядит так, как если бы частица вообще не двигалась. Однако в двух измерениях петля не может сжиматься, она застревает на другой частице. Это означает, что сжать петлю в процессе не получится. Из-за этого ограничения обнаруженного только в двух измерениях петля одной частицы вокруг другой не эквивалентна пребыванию частицы в том же самом месте. Да, голова идет кругом. Вот почему физикам понадобился третий класс частиц энионы. Их волновые функции не ограничены двумя решениями, определяющими фермионы и бозоны и эти частицы не являются ни тем ни другим.

«Топологический аргумент стал первым признаком существования энионов», считает один из авторов научной работы Гвендаль Фев, физик из Сорбоннского университета в Париже. Когда электроны ограничены в движении в двух измерениях, они охлаждаются почти до абсолютного нуля, подвергаясь воздействию сильного магнитного поля.

Исследователи построили в лаборатории маленький адронный коллайдер чтобы доказать существование энионов.

В начале 1980-х годов физики впервые использовали эти условия для наблюдения «дробного квантового эффекта Холла», при котором электроны собираются вместе, чтобы создать так называемые квазичастицы, имеющие долю заряда одного электрона. В 1984 году в основополагающей двухстраничной работе Фрэнка Вильчека, Даниэля Ароваса и Джона Роберта Шриффера было показано, что эти квазичастицы могут быть любыми. Но ученые никогда не наблюдали подобного поведения квазичастиц, а значит не могли доказать, что анионы не похожи ни на фермионы, ни на бозоны.

Это интересно: Почему квантовая физика сродни магии?

Вот почему новое исследование революционно физика наконец удалось доказать, что энионы ведут себя как нечто среднее между поведением бозонов и фермионов. Интересно и то, что в 2016 году три физика описали экспериментальную установку, напоминающую крошечный адронный коллайдер в двух измерениях. Фев и его коллеги построили нечто подобное чтобы измерить флуктуации токов в коллайдере.

Им удалось показать, что поведение энионов в точности соответствует теоретическим предсказаниям. В общем и целом авторы научной работы надеятся, что запутанные энионы смогут сыграть важную роль в создании квантовых компьютеров. Подробнее о том, что такое квантовый компьютер и как он работает, читайте в материале моего коллеги Рамиса Ганиева.

Подробнее..

Симуляция или нет? Почему некоторые ученые полагают, что наш мир нереален?

09.01.2021 00:18:18 | Автор: admin

Кадр из сериала «Черное зеркало», эпизод Playtest.

В одной из серий мультсериала «Рик и Морти» один из главных героев, будучи похищенным инопланетянами, попадает в ультра-высокотехнологичную компьютерную симуляцию и не замечает этого, продолжая заниматься привычными делами. Но может ли нечто подобное происходить с нами? Может ли быть так, что все, что мы видим, чувствуем, и слышим на самом деле нереально? В 2003 году профессор Оксфордского университета, шведский философ Ник Бостром написал статью, в которой привел аргументы в пользу того, что наш мир компьютерная симуляция. По мнению Бострома, «если мы живем в симуляции, то наблюдаемая Вселенная всего лишь крошечный кусочек того, что физически существует. Хотя мир, который мы видим, в некотором смысле «реален», на фундаментальном уровне реальности он не находится». Но неужели все в нашей Вселенной от мельчайшего атома до самой большой галактики не более чем компьютерный проект на жестком диске какого-то всемогущего существа?

Аргумент моделирования

Да, на первый взгляд представление о реальности как о компьютерной симуляции может показаться смехотворным. Но если вспомнить достижения человечества в области компьютерных игр, виртуальной реальности и робототехники (а некоторые игры сегодня настолько хорошо передают визуальные и физические свойства нашего мира), что вопрос о том, не живем ли в чем-то подобном больше не кажется бредом сумасшедшего.

В своей основополагающей статье 2003 года Ник Бостром впервые сформулировал «аргумент моделирования». Суть его заключается в том, что наша реальность на самом деле искусно смоделирована и управляется с помощью продвинутых компьютерных технологий. Шведский философ предположил, что развитые цивилизации, обладая технологиями с огромными вычислительными мощностями, могут запустить компьютерное моделирование своих предков то есть нас с вами и, учитывая сложность технологии, мы не будем знать, что на самом деле наш мир нереален.

Интересно и то, что всего за несколько десятилетий ученым удалось разработать устройства, способные изучать и имитировать многие основные характеристики человеческого интеллекта. Если вычислительная мощность продолжит расти по существующей траектории, возможно, наши потомки (или другая разумная жизнь) смогут легко создать симуляцию Вселенной.

Возможно, вся наша жизнь нереальна. Но мы никогда об этом не узнаем. Или нет?

Несколько известных ученых и философов выразили свою поддержку теории моделирования. Так, в 2016 году во время ежегодных дебатов в Американском музее естественной истории (Isaac Asimov Memorial Debate) астрофизик и популяризатор науки Нил Деграсс Тайсон сказал, что шансы того, что наша Вселенной является моделируемой реальностью, составляют 50 на 50. Тайсон также указал на большой разрыв в интеллекте между шимпанзе и людьми и это при том, что наши ДНК совпадают на 98%. Таким образом, существо, во много раз превосходящее нас по уровню интеллектуального развития, может как существовать, так и потенциально создать симуляцию нашего мира.

Еще один аргумент в пользу теории моделирования исходит от физика-теоретика Джеймса Гейтса из Мэрилендского университета, который изучает материю на уровне кварков субатомных частиц, из которых состоят протоны и нейтроны в ядрах атомов. По мнению ученого, кварки подчиняются правилам, которые в чем-то напоминают компьютерные коды, корректирующие ошибки в обработке данных. Правда, как именно эти «корректирующие коды», которые в реальном мире помогают работать браузерам, оказались в уравнениях о кварках, электронах и суперсимметрии остается загадкой.

Это интересно: Может ли Вселенная осознанно имитировать собственное существование?

В свою очередь космолог Алан Гут из Массачусетского технологического института предполагает, что Вселенная может реально существовать и одновременно являться лабораторным экспериментом. Согласно его гипотезе, наш мир создан неким сверхразумом, подобно тому, как биологи в лабораториях растят колонии микроорганизмов. В таком случае Вселенная, в которой проводился бы подобный эксперимент, осталась бы целой и невредимой. Новый мир образовался бы в отдельном пространственно-временном пузыре, который быстро отделился бы от материнской вселенной и потерял с ней контакт.

Тем не менее, какие бы удивительные и порой провокационные теории не выдвигали исследователи, почти невозможно доказать, что мы находимся в реальной вселенной, потому что любое "доказательство" может быть частью программы.

Природа реальности

Несмотря на солидные философские и теоретические аргументы, некоторые из которых изложены выше, в 2017 году команда исследователей из Оксфордского университета нашла достаточно убедительные доказательства того, что наша Вселенная это нечто большее, чем мобильное приложение. Доказательства? Попытки смоделировать конкретные квантовые явления, такие как эффект Холла, быстро выходят из-под контроля согласно работе, опубликованной в журнале Science Advances, моделирование всего нескольких сотен электронов с помощью квантового метода требует большего количества атомов, чем существует во Вселенной.

Кадр из мультсериала «Рик и Морти» в котором главные герои оказываются в симуляции, созданной пришельцами.

Но что же происходит, если допустить, что мы живем в симуляции? Некоторые эксперты предполагают, что по мере продолжения работы программы будут возникать проблемы так сказать, сбои в матрице. Как пишет The New Yorker, некоторые философы, например Дэвид Чалмерс из Нью-Йоркского университета, предполагают, что все более странные события в «реальном» мире могут свидетельствовать о том, что наша Вселенная является чьей-то симуляцией. За пределами моделирования Вселенной эти события могут представлять собой расходящиеся «точки» в реальности. Таким образом, каждый выбор, каким бы незначительным он ни был, может создать свою собственную Вселенную.

Читайте также: Астрономы создали 8 миллионов Вселенных внутри компьютера. И вот что они узнали

И все же, в то время как странные события и странно упорядоченная природа фундаментальной математики указывают на возможность того, что наш мир это компьютерная симуляция, недавние квантовые исследования предполагают, что Вселенная слишком сложна для моделирования. А как вы думаете, наша реальность и правда симуляция или есть еще более умопомрачительные теории? Ответ будем ждать здесь, а также в комментариях к этой статье.

Подробнее..

Что доказывает теорема Пуанкаре о возвращении

13.01.2021 18:04:09 | Автор: admin

Теорий, гипотез, теорем и просто рассуждений очень много. Все их надо доказывать.

Все началось еще в конце XIX века, когда ученый из Франции, Анри Пуанкаре, изучал различные части систем, которые могут быть полностью проанализированы. Как обычно, звучит это не так сложно, но именно его труды легли в основу большой задачи и стали одной из загадок, которую ученые современности называют Задачами тысячелетия. Думаю вы легко согласитесь, что если подождать достаточное количество времени, то планеты в небе выстроятся в нужную вам линию. Так же будет и с частицами газа или жидкости, которые могут сколько угодно менять свое положение, но теоретически в один из моментов времени выстроятся относительно друг друга так, как они располагались в момент начала измерений. На словах все просто — рано или поздно это случится, иначе быть не может. Вот только на деле доказать это довольно сложно. Именно над этим и работал Анри Пуанкаре больше века назад. Позже его теории были доказаны, но от этого не стали менее интересными.

Кто такой Анри Пуанкаре

Жюль Анри Пуанкаре (фр.Jules Henri Poincar) родился 29 апреля 1854 в Нанси, Франция, а умер 17 июля 1912 в Париже, Франция. Он был французским ученым, в сферу интересов которого входили самые разные науки. Среди них были: математика, механика, физика, астрономия и философия.

Кроме того, что он занимался исследованиями, Анри Пуанкаре в разные годы также был главой Парижской академии наук, членом Французской академии и ещё более 30 академий мира, в том числе иностранным членом-корреспондентом Петербургской академии наук.

Физики зафиксировали квантовый шум в лаборатории LIGO что нужно знать?

Чуть ли не единогласно историки называют Анри Пуанкаре одним из величайших математиков всех времён. Его ставили в один ряд с Гильбертом, последним математиком-универсалом, учёным, способным охватить все математические результаты своего времени.

Анри Пуанкаре сделал для математики настолько много, что некотрые его труды до сих пор приносят нам пользу.

Перу Анри Пуанкаре принадлежат более 500 статей и книг. Все это говорит о нем, как о гении, который даже спустя более 100 лет после своей смерти может изменить мир будущего своими теориями, формулами, рассуждениями и прочими научными трудами.

Что такое теорема возвращения Пуанкаре

Теорема Пуанкаре о возвращении одна из базовых теорий эргодической теории. Её суть в том, что при сохраняющем меру отображении пространства на себя почти каждая точка вернётся в свою начальную окрестность. На это потребуется огромное, но конечное количество времени.

С одной стороны, все логично, но есть у данной теории и немного непонятное следствие. Например, у нас есть сосуд, который разделен перегородкой на два отсека. В одном находится газ, а во втором ничего. Если убрать перегородку, то газ заполнит собой весь сосуд. Если верить теории повторения, то рано или поздно все частицы газа должны выстроиться в изначальной последовательности в половине сосуда.

Почему квантовая физика сродни магии

Немного развязывает руки то, что время, которое на это потребуется, может быть очень большим. Но такое следствие не совсем корректно, так как изменились условия наблюдения. Зато, если говорить о том, что перегородку мы убирать не будем, объем газа не изменится и ему не придется нарушать законы физики, произвольно меняя свою плотность, и частицы газа рано или поздно действительно займут те места, в которых они были на момент начала наблюдений.

Есть такие загадки науки, которые были понятны гению, но после него никто так и не может этого доказать. Хотя, все понимают, что автор был прав.

Теория Пуанкаре в квантовой системе

Если мы говорим о том, что в традиционной системе повторения возможны и даже неизбежны, то можно предположить, что в квантовой системе, в которой возможны несколько состояний, все немного иначе. Оказывается, это не так, и труды Пуанкаре могут быть применены и к квантовым системам. Однако правила будут немного иными.

Проблема применения заключаются в том, что состояние квантовой системы, которая состоит из большого количества частиц, не может быть измерено с большой точностью, не говоря уже об идеальном измерении. Более того, можно сказать, что частицы в таких системах можно рассматривать в качестве полностью независимых объектов. Учитывая запутанности, не сложно понять, что при анализе таких систем придется столкнуться с большим количеством сложностей.

Квантовый пластырь может помочь человеку справиться с болезнями

Несмотря на это, ученые не были бы учеными, если бы не попытались продемонстрировать эффект повторения Пуанкаре в том числе и в квантовых системах. Сделать это у них получилось. Вот только пока это возможно только для систем с очень небольшим числом частиц. Их состояние нужно измерить как можно точнее и обязательно учесть его.

Золотые слова!

Сказать, что сделать это сложно — ничего не сказать. Главная сложность в том, что время, которое потребуется системе для возвращения в исходное состояние, будет очень сильно возрастать даже при незначительном увеличении количества частиц. Именно поэтому некоторые ученые анализируют не систему в целом, а ее отдельные частицы. Они пытаются понять, возможно ли возвращение к первоначальному значению некоторых участков этой системы.

Для этого они изучают и анализируют поведение ультрахолодного газа. Он состоит из тысяч атомов и удерживается на месте при помощи электромагнитных полей. Описать характеристики подобного квантового газа можно несколькими величинами. Они говорят о том, насколько тесно могут быть связаны частицы с помощью эффектов квантовой механики. В обычной жизни это не так важно и может даже показаться чем-то ненужным, но в квантовой механике это имеет решающее значение.

Присоединяйтесь к нам в Telegram

В итоге, если понять, как такие величины характеризуют систему в целом, можно будет говорить о возможности квантового возвращения. Получив такие знания, можно более смело говорить о том, что мы знаем, что такое газ, какие процессы в нем происходят и даже прогнозировать последствия воздействия на него.

Квантовые системы сильно отличаются от всего, что мы можем себе представить.

В последнее время ученые смогли доказать, что квантовые состояния могут возвращаться, но некоторые поправки в концепцию повторения внести все же стоит. Не стоит пытаться измерить всю квантовую систему в целом, ведь эта задача близка к невозможности. Куда правильнее будет сосредоточиться на некоторых ее элементах, которые можно измерить и предсказать поведение системы в целом.

Может ли квантовая механика объяснить существование пространства-времени?

Если сказать более смело, то такие исследования и наработки в сфере самых разных наук приближают создание настоящего квантового компьютера, а не тех тестовых систем, которые существуют сейчас. Если дело продвинется, то нас ждет большое будущее. А сначала казалось, что это просто измерение чего-то непонятного. Не так ли?

Подробнее..

Странная связь человеческого разума и квантовой физики

25.02.2021 22:06:00 | Автор: admin

Некоторые ученые полагают, что существует связь между сознанием и квантовой физикой.

Никто не знает что такое сознание и как оно устроено. Безусловно, у ученых из разных областей науки есть самые разные предположения на этот счет, однако точного ответа на вопрос о том, что представляет собой сознание, никто дать не может. Похожая ситуация наблюдается и с квантовой механикой изучая взаимодействие мельчайших частиц Вселенной между собой физики многое узнали. Но так как квантовая механика не согласуется с общей теорией относительности Эйнштейна, исследователи не могут понять как привести их к общему знаменателю. По мнению одного из величайших ученых ХХ века, физика Ричарда Фейнмана, по-настоящему квантовую механику не понимает никто. Интересно, что с таким же успехом он мог бы говорить о столь же запутанной проблеме сознания. Несмотря на то, что некоторые ученые полагают, что сознание всего лишь иллюзия, другие, напротив, считают, что мы вообще не понимаем, откуда оно берется. Так что не удивительно, что извечная загадка сознания побудила некоторых исследователей обратиться к квантовой физике для ее объяснения. Но как одну неразгаданную тайну можно объяснить другой?

Что такое сознание?

Дать определение сознанию сложно. Как и ответить на вопрос о том «почему я это я» или «чем мое сознание отличается от сознания кота?» или «почему я воспринимаю мир так а не иначе?». К счастью, в мире есть ученые, готовые дать ответы если не на все, то на многие вопросы о том, что такое человеческое сознание.

Например, философ-когнитивист Дэниел Деннет, профессор Университета Тафтс (США), в своей книге «От бактерии до Баха и обратно» рассказывает о том, как биологические процессы в человеческом организме создают поток мыслей и образов. Профессор считает, что тот субъективный фильм, который проигрывается перед глазами каждого из нас не более чем иллюзия, искусно сотканная нашим мозгом. Он также полагает, что сознание не настолько загадочно, как мы думаем и считает, что наука должна объяснить объективное функционирование мозга.

Сознание человеческая способность воспроизведения действительности в мышлении.

Среди несогласных с точкой зрения Деннета ученых австралийский философ и преподаватель Дэвид Чалмерс. Он предлагает рассматривать сознание как нечто фундаментальное, например, как законы физики, которые можно будет обнаружить в будущем с помощью новейших технологий. Его вторая еще более радикальная идея называется «гипотеза панспихизма», согласно которой сознание универсально и любая система в некоторой степени им обладает, даже элементарные частицы и фотоны. А там, где есть фотоны, может быть и квантовая механика.

Подробнее о том, что такое сознание с точки зрения философов и нейробиологов читайте в этом материале.

Как квантовая физика связана с сознанием?

В 1921 году Альберт Эйнштейн был удостоен Нобелевской премии по физике за открытие закона фотоэлектрического эффекта. Физик полагал, что свет, который обычно считается непрерывной волной, также может распределяться в квантах, которые мы называем фотонами. Это событие наряду с пониманием излучения черного тела Максом Планком, новой моделью атома Нильса Бора, исследованием рентгеновских лучей Артуром Комптоном и предположением Луи де Бройля о том, что материя обладает волнообразными свойствами, положили начало новой квантовой эре, в которой нам с вами посчастливилось жить.

Стоит ли удивляться появлению новой квантовой теории сознания под названием «Организованная объективная редукция» (Orchestrated objective reduction или «Orch OR»), авторами которой являются лауреат Нобелевской премии по физике профессор Роджер Пенроуз из Оксфордского университета и анестезиолог Стюарт Хамерофф из Аризонского университета.

Теория «Orch OR», хоть и претерпела ряд изменений с момента своего создания, в целом гласит, что открытие квантовых колебаний в микротрубочках, которые находятся внутри нейронов головного мозга, дает начало сознанию. Микротрубочки (белковые полимеры) управляют нейрональными и синаптическими функциями и связывают мозговые процессы с процессами самоорганизации на квантовом уровне. Ученые считают, что новая теория может объяснить даже загробную жизнь.

«Orch OR» группа гипотез, предполагающих невозможность объяснения сознания классической механикой и требуюящая привлечения постулатов квантовой механики (явление квантовой запутанности, суперпозиции и др).

Отметим, что теория Пенроуза и Хамероффа вызвала ряд критических замечаний, однако применение квантовой теории в биологическом контексте продолжилось и имело наибольший успех в отношении фотосинтеза. Интересно, что исследования обоняния, ферментов и даже ДНК птиц также предполагают, что квантовые эффекты могут быть более широко вовлечены в функционирование биологических организмов.

Читайте также: Может ли интернет обладать сознанием?

Недавно в журнале Physics World была опубликована работа аспирантки Бетани Адамс, посвященная роли квантовых эффектов в работе мозга. Исследование Адамс освещает ряд возможных квантовых эффектов на работу мозга, а вот ее докторское исследование
сосредоточено на квантовой запутанности между нейронами и на том, как на нее могут влиять фармацевтические препараты, например литий.

Хотя работа Адамс охватывает несколько возможных применений, сама она надеется что ее исследования принесут миру лучшее понимание того, как работают антидепрессанты и стабилизаторы настроения, а также к новым методам лечения многих психических заболеваний. Но кто знает, может быть ее работа позволит ученым объяснить как работает сознание и откуда берется. А что вы думаете по поводу сознания? Как далеко продвинулись ученые в этой области? Ответ будем ждать здесь, а также в комментариях к этой статье.

Подробнее..

Что квантовая физика может рассказать о природе реальности?

12.06.2021 20:15:59 | Автор: admin

Может ли квантовая физика являться ключом к пониманию Вселенной?

Удивительная способность предков каждого из ныне живущих на планете людей к выживанию позволила нам с вами наслаждаться всеми благами и достижениями цивилизации. Но раз уж на то пошло и миллионы лет эволюции позволили нам познать самих себя и окружающий мир, то что за это время нам удалось узнать о Вселенной? На самом деле не так уж много по меркам той же Вселенной мгновение. И все же, все существующие на сегодняшний день физические теории описывают мир невероятно точно. Так, и классическая физика и квантовая механика по отдельности превосходно работают. Вот только все попытки объединить их в единую теорию по-прежнему не увенчались успехом, а значит наше понимание Вселенной и реальности нельзя назвать полноценным. В начале 1900-х годов рождение квантовой физики ясно показало, что свет состоит из крошечных неделимых единиц, или квантов энергии, которую мы называем фотонами. Эксперимент Юнга, проведенный с одиночными фотонами или даже отдельными частицами материи, такими как электроны и нейтроны, представляет собой головоломку, поднимающую фундаментальные вопросы о самой природе реальности. Решить ее ученые не могут до сих пор.

Двухщелевой эксперимент

В современной квантовой форме эксперимент Юнга включает в себя излучение отдельных частиц света или материи через две щели или отверстия, вырезанные в непрозрачном барьере. По другую сторону барьера находится экран, который регистрирует прибытие частиц (скажем, фотопластинка в случае фотонов). Исходя из здравого смысла мы ожидаем, что фотоны пройдут через ту или иную щель и начнут накапливаться за каждой из них.

Но этого не происходит. Скорее, фотоны переходят в определенные части экрана и избегают других, создавая чередующиеся полосы света и тьмы, так называемые интерференционные полосы. Они возникают, когда два набора волн накладываются друг на друга. И все же, в любой момент времени через аппарат проходит только один фотон. Как будто каждый фотон проходит через обе щели одновременно и интерферирует сам с собой. Это не имеет классического смысла. Так в чем же дело?

Двухщелевой эксперимент демонструет, что свет и материя в целом могут проявлять характеристики как классических волн, так и частиц.

Картина несколько проясняется, если посмотреть на нее с математической точки зрения. То, что проходит через обе щели это не физическая частица или физическая волна, а нечто, называемое волновой функцией абстрактная математическая функция, которая представляет состояние фотона (в данном случае его положение). Волновая функция ведет себя как волна. Фотон попадает в обе щели, и новые волны исходят из каждой щели с другой стороны, распространяются и в конечном итоге мешают друг другу. Комбинированная волновая функция может быть использована для определения вероятностей того, где можно найти фотон.

Еще больше увлекательных статей о последних открытиях в области физики и высоких технологий читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте.

Природа реальности

Немецкий физик-теоретик, один из создателей квантовой механики Вернер Гейзенберг интерпретировал математику так, что реальность не существует до тех пор, пока ее не наблюдают. «Идея объективного реального мира, мельчайшие части которого существуют объективно в том же смысле, в каком существуют камни или деревья, независимо от того, наблюдаем мы их или нет … это невозможно», писал он.

Как пишет Scientific American, американский физик Джон Уилер также использовал вариант эксперимента с двумя щелями, чтобы доказать, что «ни одно элементарное квантовое явление не является явлением, пока оно не является зарегистрированным (то есть «наблюдаемым») явлением».

Это интересно: Почему квантовая физика сродни магии?

Принцип неопределенности Гейзенберга гласит, что соотношение неопределенности возникает между любыми квантовыми наблюдаемыми, определяемыми некоммутирующими операторами.

Существуют и другие способы интерпретации эксперимента с двумя щелями. Так, лауреат Нобелевской премии по физике сэр Роджер Пенроуз предполагает, что чем больше масса объекта в суперпозиции, тем быстрее он коллапсирует в то или иное состояние из-за гравитационной нестабильности.

«Идея заключается в том, чтобы не просто поместить фотон в суперпозицию прохождения через две щели одновременно, но и поместить одну из щелей в суперпозицию нахождения в двух местах одновременно».

Лауреаты Нобелевской премии по физике 2020 года.

Согласно Пенроузу, смещенная щель либо останется в суперпозиции, либо схлопнется, пока фотон находится в полете, что приведет к различным типам интерференционных картин. В общем и целом, эти эксперименты показывают, что мы пока не можем делать никаких заявлений о природе реальности. А вот о том, может ли квантовая механика объяснить существование пространства-времени можно узнать в этой статье.

Подробнее..

Итальянский физик-теоретик Карло Ровелли считает, что наша реальность это игра квантовых зеркал

11.09.2021 22:13:11 | Автор: admin

Наш мир, по мнению итальянского физика-теоретика Карло Ровелли, является квантовым.

Итальянский физик-теоретик, основоположник теории петлевой квантовой гравитации Карло Ровелли в своей книге под названием «Гельголанд» пытается объяснить безумно сложную теорию квантовой механики, рассматривая мир фотонов, электронов, атомов и молекул, который подчиняется правилам, идущим вразрез с нашей повседневной физической реальностью. Ранее Ровелли разработал математические таблицы (матрицы), чтобы предсказать волновую механику электронов. Его работа вскоре была усовершенствована Эрвином Шредингерегом и Полом Дираком. Напомню, что квантовая теория возникла из наблюдений Гейзенберга и более ранней теории относительности Эйнштейна. До Эйнштейна ученые верили в предсказуемую, детерминированную Вселенную, управляемую часовым механизмом. Ньютоновской идее об абсолютном «истинном времени», неумолимо тикающем во Вселенной, противостояла теория Эйнштейна о том, что единого «сейчас» нет, скорее, существует множество «сейчас». Гейзенберг и его последователи считали, что мы не можем знать современное состояние мира во всех деталях. Все, что нам дозволено исследовать мир с помощью моделей неопределенности и вероятности.

"Загадка квантовой теории в конечном счете может оказаться за пределами нашего приблизительного понимания на Земле. Но ньютоновская механика, хотя и далеко не устарела, больше не может объяснить каждый аспект мира, в котором мы живем", пишет Ровелли.

Квантовая реальность

Квантовая теория предлагает нам увидеть мир как гигантскую кошачью колыбель отношений, где объекты существуют только в терминах их взаимодействия друг с другом. Ровелли считает, что теория Гейзенберга это теория о том, как вещи «влияют» друг на друга. Она составляет основу всех современных технологий от компьютеров до ядерной энергетики, лазеров, транзисторов и МРТ-сканеров.

В своих измышлениях итальянский физик применяет квантовую теорию к различным философиям. Люди существуют благодаря их непрерывному взаимодействию друг с другом; то же самое происходит с атомами и электронами.

Карло Ровелли на лекции в Риме / Marco Tambara/Wikipedia

Итак, возьмем электрон, который испускается в точке А и обнаруживается в точке В. Можно было бы предположить, что электрон следует по траектории (как автомобиль из точки А в точку В), однако чтобы объяснить экспериментальные наблюдения, Гейзенберг отверг понятие траектории электрона. А полученная в результате квантовая теория имеет дело с вероятностями и позволяет рассчитать вероятность нахождения электрона в точке B.

Больше по теме: Что квантовая физика может рассказать о природе реальности?

При этом, мы ничего не знаем о пути, по которому движется электрон. В своей самой строгой форме квантовая теория и вовсе отрицает какую-либо реальность электрона до тех пор, пока он не будет обнаружен (что приводит некоторых к утверждению, что сознательный наблюдатель каким-то образом создает реальность).

Скрытая реальность

С 1950-х годов ученые пытались привести квантовую теорию в соответствие с требованиями классической физики, в том числе отстаивая «скрытую» реальность, в которой электрон действительно имеет траекторию, или предполагая, что электрон проходит все возможные пути, но эти пути проявляются в разных мирах. Но Ровелли отвергает эти попытки.

Вместо этого в своей новой книге ("Гельголанд") физик объясняет "реляционную" интерпретацию, в которой электрон, скажем, обладает свойствами только тогда, когда он взаимодействует с чем-то другим. Когда электрон не взаимодействует, он лишен физических свойств: ни положения, ни скорости, ни траектории.

Еще более радикальным является утверждение Ровелли о том, что свойства электрона реальны только для объекта, с которым он взаимодействует, а не для других объектов. «Мир раскалывается на множество точек зрения, которые не допускают однозначного глобального видения», пишет Ровелли.

Как пишет Financial Times, Квантовую физику нельзя сделать совершенно ясной, но Ровелли прекрасно обеспечивает максимальную ясность, насколько это возможно.

Ожидание того, что объекты будут иметь свое собственное независимое существование независимо от нас и любых других объектов на самом деле является глубоко укоренившимся предположением, которое мы делаем о мире. Это предположение берет свое начало в научной революции 17 века и является частью того, что мы называем механистическим мировоззрением. Согласно этой точке зрения, мир подобен гигантскому часовому механизму, части которого управляются установленными законами движения, Карло Ровелли, «Гельголанд».

Чтобы всегда быть в курсе последних новостей из мира физики и научных исследований, подписывайтесь на наш Telegram-канал. Так вы точно не пропустите ничего интересного!

Взаимодействия объектов и пространство-время

Итак, если рассматривать пространство и время как сумму расстояний и длительностей между всеми объектами и событиями мира и убрать из уравнения содержимое Вселенной, то мы автоматически «удалим» и пространство и время. Это «реляционный» взгляд на пространство-время: они являются только пространственными и временными отношениями между объектами и событиями. Реляционный взгляд на пространство и время был ключевым источником вдохновения для Эйнштейна, когда он разработал общую теорию относительности.

Наше понимание пространства-времени вряд ли можно назвать полноценным.

Ровелли использует эту идею для понимания квантовой механики. Он утверждает, что объекты квантовой теории, такие как фотон, электрон или другая фундаментальная частица, являются не чем иным, как свойствами, которые они проявляют при взаимодействии с другими объектами по отношению к ним. Эти свойства квантового объекта определяются с помощью эксперимента и включают такие вещи, как положение объекта, импульс и энергия. Вместе они составляют состояние объекта.

Согласно реляционной интерпретации Ровелли, эти свойства это все, что есть у объекта, а значит нет никакой лежащей в основе индивидуальной субстанции, которая "обладает" свойствами.

Как понять квантовую теорию?

В своей статье для The Conversation Ровелли предлагает рассмотреть хорошо известную квантовую головоломку кота Шредингера. Мы помещаем кошку в коробку с каким-нибудь смертельным веществом (например, флакон с ядовитым газом), запускаемым квантовым процессом (например, распадом радиоактивного атома), и закрываем крышку.

Квантовый процесс это случайное событие. Предсказать его невозможно, но мы можем описать произошедшее таким образом, чтобы определить различные шансы распада атома или его отсутствия в течение определенного периода времени. Поскольку открыв коробку мы высвободим газ из флакона, следовательно, и смерть кошки и ее жизнь также являются чисто случайным событием.

Согласно квантовой теории, кот ни мертв, ни жив, пока мы не откроем коробку и не понаблюдаем за системой. Остается загадкой, каково было бы кошке, если бы она не была ни живой, ни мертвой.

Но согласно реляционной интерпретации, состояние любой системы всегда находится по отношению к какой-либо другой системе. Таким образом, квантовый процесс в коробке может иметь неопределенный результат по отношению к нам, но определенный результат для кошки.

Так что вполне разумно, что кошка для нас ни жива ни мертва, но в то же самое время может быть и мертвой и живой. Для нас во всей этой истории реален один факт и один факт реален для кошки. Когда мы открываем коробку, состояние кошки становится для нас определенным, но кошка никогда не была в неопределенном состоянии для себя. В реляционной интерпретации глобального, «Божественного» взгляда на реальность е существует. Но что, в таком случае, это говорит нам о природе реальность?

Читайте также: Тайны квантовой механики что такое квантовая запутанность?

Скорее всего ответ на вопрос о том, что такое квантовая реальность, мы так и не узнаем. Но попытаться стоит.

Ровелли утверждает, что, поскольку наш мир в конечном итоге квантовый, стоит обратить внимание на его подобное восприяти. В частности, такие объекты, ка, например, любимая книга, могут обладать своими свойствами только по отношению к другим объектам, включая вас. К счастью, это также включает в себя все другие предметы, такие как смартфон или кухонный шкаф. Но несмотря на свою кажущуюся простоту, подобный взгляд на мир это драматическое переосмысление природы реальности.

Это интерсно: Может ли квантовая механика объяснить существование пространства-времени?

С этой точки зрения мир представляет собой сложную сеть взаимосвязей, так что объекты больше не имеют собственного индивидуального существования, независимого от других объектов, подобно бесконечной игре квантовых зеркал. Более того, вполне возможно, что в основе этой сети нет независимой «метафизической» субстанции, составляющей нашу реальность, пишет Ровелли.

Так что не исключено (как выразился сам Ровелли), что окружающая реальность, включая нас самих ни что иное, как тонкая и хрупкая завеса, за которой … нет ничего. А если прибавить к этому еще и загадку природы сознания, то все становится еще сложнее. Кстати, подробнее о том, что такое сознание, я рассказывала в этой статье, рекомендую к прочтению.

Подробнее..

Что нужно знать о новой квантовой теории времени?

19.02.2021 18:16:12 | Автор: admin

Ученые хотят доказать, что время движется в разных направлениях с помощью ядерного реактора.

Что такое время и может ли быть так, что все наши представления о нем ошибочны? Если попробовать разобраться, окажется, что человечество воспринимает время достаточно просто оно движется вперед и не может повернуть назад. Более того, ход времени неумолим и мы никоим образом не можем на него повлиять. Недавно команда исследователей из Центра квантовой динамики Университета Гриффита, Национального института измерений (NMI) и Австралийской организации ядерных наук и технологий (ANSTO) поставила эксперимент, главной целью которого являлась попытка доказать правильность или неправильность современной квантовой теории времени. Новая революционная теория, по мнению ее авторов, может перевернуть все наши представление о времени и пространстве все потому, что она допускает возможность существования статичной и неизменной Вселенной. Физики предположили, что факт изменения вещей с течением временине является врожденной особенностью природы, а скорее вызван фундаментальным нарушением симметрии обращения времени, называемым «Т-нарушением». Если ученые окажутся правы, то их работа перевернет все современные представления о времени и пространстве, а также изменит наш взгляд на фундаментальные законы природы.

Квантовая теория времени

Современное понимание времени предполагает, что оно течет только в одном направлении от меньшей энтропии к большей и является фундаментальной характеристикой Вселенной. Еще в 1927 году астроном сэр Артур Эддингтон заявил, что постепенное рассеивание энергии является доказательством необратимости стрелы времени. Интересно, что само понятие «стрела времени» не соответствует известным законам физики, действующим как в прямом так и в противоположном направлении. Так что если бы кто-то знал пути всех частиц во Вселенной, то смог бы обратить их вспять и энергия стала бы накапливаться, а не рассеиваться.

Интересно и то, что с самого момента зарождения термодинамики (1850-е годы) формула статистического распределения неизвестных траекторий частиц являлась единственным способом расчета распространения энергии. Однако расчеты, выполненные таким образом, демонстрировали, что с течением времени общая картина становилась … все более смазанной. А вот новая квантовая теория времени, выдвинутая физиком-теоретиком, профессором Университета Гриффита Джоан Ваккаро, предполагает, что время может течь и в других направлениях, но мы наблюдаем его течение только в одном направлении вперед.

Энтропия в точных и естественных науках обозначает меру необратимого рассеивания энергии или ее бесполезности.

Если новая квантовая теория времени окажется правильной, то она перевернет всю физику с ног на голову.

Новая теория, как оказалось, разрабатывалась профессором Ваккаро целых десять лет. Ваккаро сравнила течение времени с ветром, дующим на деревья, отметив, что мы можем видеть движение листьев, но не предполагаем, что листья заставляют ветер дуть через них. Тот факт, что мы можем наблюдать, как вещи меняются с течением времени, не является «встроенной особенностью природы», а вызван «фундаментальным нарушением симметрии обращения времени», известным как «нарушение Т«.

Как пишет Ваккаро, «нарушения Т» не позволяют материи оставаться локализованной во времени. Из-за «T-нарушений» объекты не появляются и не исчезают случайно, они существуют непрерывно. Известные нам законы движения и сохранения массы являются ничем иным как симптомами этих самых «Т-нарушений».

«Если наша теория правильная, то она перевернет все, что и как мы думаем о времени и пространстве, а также о фундаментальных законах, таких как сохранение массы», — отмечает профессор. Полностью с текстом исследования можно ознакомиться на сайте научного журнале «Proceedings of the Royal Society A

Хотите всегда быть в курсе последних научных открытий из самых разных областей науки? Подписывайтесь на наш новостной канал в Telegram, чтобы не пропустить ничего интересного!

Доказательства новой теории времени

Итак, согласно полученным в ходе исследования данным, энергия рассеивается, а объекты приходят в равновесие. Происходит это потому, что элементарные частицы при взаимодействии запутываются. Этот странный эффект физики называют квантовым смешением или запутанностью. Подробнее о том, что такое квантовая запутанность, я рассказывала в этой статье.

Для проверки своей теории исследователи предприняли не самый простой шаг, отправившись прямиком к ядерному реактору, расположенному в Лукас-Хайтс (Сидней, Австралия), чтобы измерить «Т-нарушения» от нейтрино. Дело в том, что и нейтрино и их аналоги из антивещества (антинейтрино), производятся в ядерных реакторах. Для проведения эксперимента физики установили в разных местах реактора несколько точных атомных часов. Напомню, что атомные часы это прибор для измерения времени, в котором используются колебания, связанные с происходящими на уровне атомов или молекул процессами.

Солнце хороший источник нейтрино, но его нельзя включить и выключить, поэтому ядерный реактор оказался запасным вариантом для физиков.

Антинейтрино это субатомные частицы, которые проявляют "Т-нарушение". Они движутся сквозь материю невредимыми, поскольку слабо взаимодействуют с ней, и ядерные реакторы производят их огромные потоки.

Идея установки атомных часов заключается в том, что если часы не синхронизируются, то физики станут свидетелями эффекта квантового замедления времени или локальных «T-нарушений». Как отмечают авторы научной работы, практическая сторона новой квантовой теории времени заключается в том, что если у вас есть область с большим количеством нейтрино, например, генерируемых ядерным реактором, то время может двигаться по-другому.

Предполагается, что часы, расположенные вблизи активной зоны реактора, не синхронизируются с более удаленными часами. Это означает, что часы рядом с реактором будут показывать некоторое замедление времени или разницу в прошедшем времени по сравнению с часами, расположенными даже на небольшом расстоянии от реактора. Причина такого эффекта носит чисто квантовый характер и возникает из-за «Т-нарушений» антинейтрино, испускаемых активной зоной реактора. Интересно и то, что несмотря на уже опубликованные результаты, физики в ближайшие шесть месяцев продолжат наблюдения.

Читайте также: Почему квантовая физика сродни магии?

Резюмируя столь необычное и сложное исследование, отметим, что впереди у ученых очень много работы. Профессор Ваккаро в официальном заявлении отметила, что «если эффект замедления времени происходит на уровне реактора, нам нужно будет проверить его на других ядерных реакторах, а затем искать эффект в других местах, например, в данных об орбитах планет». А вот уже опубликованная работа может быть использована в качестве основы для новаторских научных исследований в этой области.

Подробнее..

Ограничения скорости обнаружены в квантовом мире

01.03.2021 18:06:00 | Автор: admin

Квантовая физика интригует, так как содержит в своей основе некоторую тайну.

Если квантовая теория верна, то от таких квантовых частиц как атомы, можно ожидать очень странного поведения. Но несмотря на хаос, коим может показаться квантовая физика, в этом удивительном мире крошечных частиц действуют свои собственные законы. Недавно команде ученых из Университета Бонна удалось доказать, что в квантовом мире на уровне сложных квантовых операций действует ограничение скорости. Атомы, будучи маленькими неделимыми частицами, в некотором смысле напоминают пузырьки шампанского в бокале. Описать их можно как волны материи, однако их поведение больше напоминает бильярдный шар а не жидкость. Каждый, кому в голову придет идея очень быстро переместить атом из одного места в другое, должен действовать со знанием дела и сноровкой как у опытного официанта на банкете не пролив ни капли шампанского из десятка бокалов на подносе, лавируя между столиками. Но даже в таком случае экспериментатор столкнется с определенным ограничением скорости лимитом, превысить который невозможно. Полученные в ходе исследования результаты важны для работы квантовых компьютеров, а эта область, как наверняка знает уважаемый читатель, в последние годы активно развивается.

Ограничение скорости на примере атома цезия

В исследовании, опубликованном в журнале Physical Review X, физикам удалось экспериментально доказать существование лимита скорости во время сложных квантовых операций. В ходе работы ученые из Университета Бонна, а также физики из Массачусетского технологического института (MIT), Исследовательского центра Юлиха, университетов Гамбурга, Кельна и Падуи экспериментальным путем выяснили где именно проходит ограничение.

Для этого авторы научной работы взяли атом цезия и направили два идеально наложенных друг на друга лазерных луча друг против друга. Цель исследования заключалась в максимально быстрой доставке атома цезия в нужное место таким образом, чтобы атом не «выпал» из обозначенной «долины», как капля шампанского из бокала. Такую суперпозицию физики называют инферференцией, она создает стоячую световую волну, которая напоминает изначально недвижимую последовательность «гор» и «долин». В ходе эксперимента физики загрузили атом цезия в одну из таких «долин», а затем привели в движение стоячую световую волну, которая сместила положение «долины».

Стоячая электромагнитная волна периодическое изменение амплитуды напряженности электрического и магнитного полей вдоль направления распространения, вызванное интерференцией падающей и отраженной волн.

Автор исследования Маноло Ривера Лам (слева) и ведущий автор научной работы доктор Андреа Альберти (справа) из Института прикладной физики Университета Бонна. университета.

Сам факт того, что в микромире существует ограничение скорости, был теоретически продемонстрирован более 60 лет назад двумя советскими физиками Леонидом Мандельштамом и Игорем Таммом. Они показали, что максимальная скорость в квантовых операциях зависит от энергетической неопределенности, то есть от того, насколько «свободна» манипулируемая частица по отношению к своим возможным энергетическим состояниям: чем больше у нее энергетической свободы, тем она быстрее. Например, в случае транспортировки атома цезия, чем глубже «долина», в которую попадает атом, тем более распределены энергии квантовых состояний в «долине», и в конечном итоге тем быстрее атом можно переместить.

Нечто похожее можно увидеть внимательно наблюдая за официантом в ресторане: если он наполняет бокалы наполовину (по требованию гостя), то шансы пролить шампанское уменьшаются, несмотря на скорость, с которой официант разливает напиток. Тем не менее энергетическую свободу отдельно взятой частицы нельзя просто так взять и увеличить. «Мы не можем сделать нашу «долину» бесконечно глубокой, потому что это требует слишком много энергии», пишут авторы исследования.

Чтобы всегда быть в курсе последних научных открытий в области физики и высоких технологий, подписывайтесь на наш новостной канал в Telegram!

Новые результаты для науки

Ограничение скорости, предложенное Мандельштамом и Таммом фундаментальное. Однако достигнуть его можно при определенных обстоятельствах, а именно в системах только с двумя возможными квантовыми состояниями. В случае проведенного исследования, например, это происходило когда пункт отправления и пункт назначения находились чрезвычайно близко друг к другу. «Тогда волны материи атома в обоих местах накладываются друг на друга, и атом может быть доставлен прямо к месту назначения за один раз, то есть без каких-либо промежуточных остановок. Это похоже на телепортацию в сериале «Звездный Путь», рассказали авторы исследования изданию Phys.org.

И все же, ситуация меняется, когда расстояние между пунктом отправления и пунктом назначения увеличивается до нескольких десятков значений волны материи, как в эксперименте исследователей из Университета Бонна. На такие расстояния прямая телепортация невозможна. Вместо телепортации, чтобы достигнуть пункта назначения, частица должна пройти ряд промежуточных расстояний: и именно здесь ситуация из двухуровневой переходит в многоуровневою.

Читайте также: Может ли квантовая механика объяснить существование пространства-времени?

В мире атомов действуют свои собственные законы, часто непонятные и незаметные для стороннего наблюдателя.

Результаты исследования показали, что к таким процессам применяется более низкий предел скорости, чем обозначили советские ученые: он определяется не только неопределенностью энергии, но и числом промежуточных состояний. Все вышеописанное означает, что новое исследование улучшает теоретическое понимание сложных квантовых процессов и ограничений.

Атомы и квантовые компьютеры

Как отмечают физики, полученные результаты применимы в области квантовых компьютеров. Все потому, что проведенный эксперимент посвящен переносу атома, а подобные процессы происходят и в квантовом компьютере. Когда квантовые биты реализуются атомами, они должны перенестись из одной области процессора в другую. Это именно тот процесс, который нужно делать очень быстро, иначе вся его связность пропадет. Благодаря квантовому пределу скорости теперь можно точно предсказать, какая скорость теоретически возможна.

Так так выглядит 50-кубитный квантовый компьютер IBM.

Для квантовых компьютеров, однако, полученные результаты не означают предел вычислительной скорости. Тот факт, что квантовый компьютер может вычислять так быстро, в первую очередь связан не с длительностью как таковой, а скорее с количеством операций. Квантовому компьютеру для выполнения определенной задачи требуется гораздо меньше операций, чем обычному компьютером. Вычисление с помощью квантового компьютера похоже на поиск выхода из лабиринта без необходимости последовательно проверять все возможные пути. Именно в этом и заключается ускорение: нужно только один раз отправить квантовый компьютер через лабиринт, в то время как с классическим компьютером нужно опробовать очень большое количество вариантов один за другим.

Вам будет интересно: В Китае создан квантовый компьютер, который решил самую сложную задачу за 200 секунд

По мнению ведущего автора исследования Андреа Альберти, в этом смысле нет никаких последствий для вычислительной мощности квантового компьютера. Но квантовый предел скорости интересен и по другой причине обнаруженный предел показывает, что возможно выполнение значительно большего числа операций, чем считалось раньше.

Подробнее..

Ученые приблизились к созданию новой теории квантовой гравитации

25.02.2021 16:13:49 | Автор: admin

Новый подход может выявить связь между гравитацией и квантовой механикой

Классические модели физики законы движения Ньютона и Общая теория относительности Эйнштейна предполагают, что такие свойства объекта как положение и движение являются абсолютными. Эти теории являются венцом достижений современной физики, описывающей природу изысканно, но по отдельности. ОТО имеет дело с большими знакомыми объектами и событиями Вселенной, в то время как квантовая механика охватывает невидимый и странный микромир, где две частицы, разделенные тысячами световых лет, могут мгновенно реагировать на движения друг друга. Эти два теоретических мира, определенный классический и неопределенный квантовый, работают чрезвычайно хорошо. Классический для больших массивных объектов, таких как бейсбольные мячи и планеты, и квантовый для малых легких объектов, таких как атомы и молекулы. Однако оба этих подхода рушатся, когда мы пытаемся изучать массивные, но маленькие объекты, например внутреннее устройство черных дыр или наблюдаемую Вселенную вскоре после Большого взрыва. Но почему?

Как устроена Вселенная

Гравитация является первой фундаментальной силой, существование которой признало человечество, но она по-прежнему остается наименее понятной. Физики могут предсказать влияние гравитации на шары для боулинга, звезды и планеты с исключительной точностью, но никто не знает, как эта сила взаимодействует с мельчайшими частицами или квантами. Пожалуй, неудивительно, что на создание квантовой теории, описывающей как мельчайшие частицы Вселенной взаимодействуют между собой, у ученых ушло почти столетие. Многие полагали что один гравитационный свод правил должен управлять всеми галактиками, кварками и тем, что находится между ними.

Чтобы основать радикально новый подход к определению того, как наша Вселенная устроена на самом фундаментальном уровне, ученые обратились к передовым исследованиям в области квантовых вычислений и квантовых технологий. Недавно международная группа экспертов во главе с исследователями из Ноттингемского университета продемонстрировала, что только квантовая, а не классическая гравитация может быть использована для создания определенного информационного компонента, необходимого для квантовых вычислений.

Читайте также: Что такое Общая теория относительности Эйнштейна?

«Более ста лет физики боролись за то, чтобы определить, как две фундаментальные теории науки, квантовая теория и общая теория относительности, которые соответственно описывают микроскопические и макроскопические явления, объединены в единую всеобъемлющую теорию природы», отмечает ведущий автор исследования доктор Ричард Хоул.

«За это время они разработали два принципиально противоположных подхода, названных «квантовой гравитацией» и «классической гравитацией». Однако полное отсутствие экспериментальных данных означает, что физики не знают, какой подход на самом деле использует всеобъемлющая теория. Наше исследование предоставляет экспериментальный подход к решению этой проблемы,» отмечают авторы исследования, опубликованного в журнале Physical Review journal.

Когда вы хотите узнать как гравитация массивной звезды искривляет свет, то достаете учебник по теоретической физике ОТО. Но если ваша цель разобраться в том, как электроны движутся через компьютерный чип, придется взять в руки учебник по квантовой механике.

Вам будет интересно: Тайны квантовой механики что такое квантовая запутанность?

Новая теория квантовой гравитации

Так как в ходе нового исследования эксперты в области квантовых вычислений, квантовой гравитации и квантовых экспериментов работали вместе, им удалось обнаружить неожиданную связь между областями квантовых вычислений и квантовой гравитацией и даже использовать ее, чтобы предложить новый экспериментальной способ проверки того, что существует квантовая, а не классическая гравитация.

«Если теории квантовой гравитации нет, то Вселенная это просто хаос. Случайность», сказала Нетта Энгельгардт, физик-теоретик из Массачусетского технологического института в интервью изданию Wired.

Предлагаемый эксперимент, как пишет Phys.org, заключается в охлаждении миллиардов атомов в сферической ловушке миллиметрового размера до экстремально низких температур. Именно в таких условиях атомы переходят в состояние, называемое конденсатом Бозе-Эйнштейна и начинают вести себя согласованно, будто один большой квантовый атом. Затем к «атому», чтобы он ощущал только свое собственное гравитационное притяжение, прикладывается магнитное поле.

Авторы научной работы отмечают, что если их теория квантовой гравитации верна, тогда в изменении характеристик системы будет наблюдаться определенные несоответствия. Примечательно, что эксперимент должен состояться в самое ближайшее время, так как у ученых уже есть все необходимые для него технологии. Если все пройдет хорошо, то после более чем ста лет исследований, физики, наконец, получат информацию об истинной всеобъемлющей, фундаментальной теории природы, той самой теории всего.

Гравитационные волны порожденные слиянием нейтронных звезд в исполнении художника. Первичная Вселенная еще один источник гравитационных волн, которые, если их обнаружить, могут помочь физикам разработать квантовую теорию гравитации.

Еще больше увлекательных статей о том, как устроена Вселенная и какие силы ей управляют, читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте

Доктор Мариос Христодулу из Гонконгского университета, участвовавший в этом сотрудничестве, добавил: «Это исследование особенно интересно, поскольку предложенный эксперимент также связан с более философской идеей о том, что Вселенная ведет себя как огромный квантовый компьютер, который вычисляет сам себя, демонстрируя, что квантовые флуктуации пространства-времени являются огромным природным ресурсом для квантовых вычислений.» Ну а пока будем ждать. Кто знает, быть может мир стоит на грани нового, удивительного открытия.

Подробнее..

Физики изобрели способ обнаружить темную материю

22.04.2021 18:07:46 | Автор: admin

Физики разработали методику для окончательного обнаружения темной материи

Нашу Вселенную формирует нечто, что мы c вами не можем непосредственно наблюдать. Эта таинственная субстанция, называемая темной материей, заполняет 85% Вселенной и ответственна за ее структуру и расположение галактик и звезд. Так как темная материя не взаимодействует со светом, но имеет вес, измерить ее можно только косвенно темная материя искривляет свет звезд из-за гравитационного эффекта, подобно тому, как стекло преломляет свет. Стоит ли удивляться, что эта таинственная субстанция десятилетиями ставила ученых в тупик. Но наука не стоит на месте и последние исследования в области квантовых технологий могут оказаться жизненно важным звеном в разгадке тайны темной материи. Недавно коллаборация исследователей из США разработала новые устройства, использующие квантовые вычислительные биты, способные обнаруживать слабые сигналы от любой из субатомных частиц. Новый метод, как полагают физики, позволит искать доказательства существования темной материи в 1000 раз быстрее, чем когда-либо.

Удивительные открытия

Пока марсоходы летают по Красной планете, мир физики буквально сотрясают научные открытия. Недавно исследователи из Fermilab сообщили об открытии, результаты которого расходятся со Стандартной моделью теоретической конструкцией, которая описывает электромагнитное, слабое и сильное взаимодействие всех элементарных частиц. Согласно полученным результатам, мюоны их обнаружили в космических лучах при прохождении через магнитное поле отклоняются, что противоречит теории и может быть признаком существования неизвестной науке силы природы.

В то же самое время ученые из Budapest-Marseille-Wuppertal Collaboration применили новый метод расчета взаимодействия мюонов с магнитными полями. Их результаты, как это ни странно, подтвердили незыблемость Стандартной модели и если окажутся верны, то никакого расхождения между теорией и экспериментом нет, а значит нет и новой силы природы.

Важно отметить, что описанные выше исследования далеко не единственные в этой области. Так, ранее полученные результаты на Большом адронном коллайдере (БАК) в ЦЕРН также свидетельствуют о возможном существовании новой физики, а датские ученые недавно и вовсе поставили под сомнение существование темной энергии силы, которая, как считается, ответственна за расширение Вселенной.

Эксперименты в ЦЕРН на Большом адронном коллайдере также свидетельствуют (если верны), о наличии «новой физики».

Сегодня сами физики не могут сказать что-то определенное (особенно о крахе Стандартной модели), так как все полученные результаты необходимо будет перепроверить. Этот процесс, по мнению ученых, может занять год или полтора. Как сообщил физик Андрей Голутвин, работающий на Большом адронном коллайдере, в интервью Тасс.Наука, за это время существование новой физики или подтвердят, или опровергнут.

Ну а пока ученые трудятся над проверкой результатов, физики из Чикагского университета, похоже, нащупали ключ к разгадке тайны темной материи, который и это самое интересное связан с результатами, полученными в Fermilab.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

Как обнаружить темную материю?

Прямое обнаружение частиц темной материи ускользало от ученых на протяжении десятилетий, но отнюдь не из-за недостатка попыток. Эксперименты на Земле были направлены на поиск странного вещества с помощью БАК, но космос, похоже, проводит свои собственные эксперименты астрономы (при условии что они знают где искать) уже сегодня могут обнаружить сигнатуру темной материи. Сделать это можно с помощью необычного рентгеновского излучения от галактик (когда частицы темной материи распадаются), странных вспышек света или рентгеновских лучей вблизи нейтронных звезд (когда частицы темной материи превращаются в фотоны в их мощных магнитных полях). Но есть и другой способ.

Его недавно продемонстрировала команда исследователей из Чикагского университета и Национальной ускорительной лаборатории Ферми Министерства энергетики США, разработав новые устройства, способные обнаруживать слабые сигналы от любой из субатомных частиц «аксиона» и «скрытого фотона» считалось, что они взаимодействуют с фотонами или частицами света в видимой повседневной Вселенной.

Новый метод позволит ученым искать доказательства существования темной материи в 1000 раз быстрее, чем когда-либо.

Вам будет интересно: Могут ли гравитационные волны разрешить кризис космологии?

Теоретическое существование аксионов было предложено более 30 лет назад, вот только обнаружить их экспериментальным путем не удалось. Новая техника, по мнению ученых, способна радикально продвинуть научные исследования в области изучения темной материи. Ознакомиться с текстом исследования, опубликованного в журнале Physical Review Letters можно здесь.

«Мы знаем, что вокруг нас существует огромное количество массы, которая не состоит из того же материала, что и мы с вами», сказал Аарон Чоу, физик из Fermilab и соавтор нового исследования в интервью New Atlas. «Природа темной материи это действительно непреодолимая тайна, которую многие из нас пытаются разгадать.»

Кубиты и темная материя

Необходимо отметить, что в последнее десятилетие ученые улучшили способность использовать свойства квантовой механики, которые управляют странным поведением частиц в мельчайших масштабах Вселенной. Достижения в этой области позволили создать такую технологию, как «кубит» или бит квантовых вычислений. Кубиты невыразимо чувствительны к малейшим нарушениям в окружающей среде. И это (как вы уже могли догадаться) именно то, что нужно физикам для обнаружения темной материи.

Кубит (маленький прямоугольник) устанавливается на сапфировую подложку, которая располагается на кончике пальца. Ученые использовали кубит, подобный этому, чтобы разработать методику, которая ускорит поиск аксионной темной материи и скрытых фотонов.

Читайте также: Если гравитация это не сила, то как она притягивает объекты?

Новая методика использует кубиты для обнаружения фотонов, генерируемых при воздействии частиц темной материи на электромагнитное поле. Специальное устройство, так называемый сверхпроводящий резонатор, предлагает способ создания и хранения сигнального фотона: как только фотон оказывается там, в полость вставляется кубит, собирающий о нем данные. Этот метод, вероятнее всего, поможет обнаружить темную материю, поскольку любую невидимую частицу, которая преобразуется в фотоны, можно будет увидеть. Так что нам с вами снова остается ждать, но только на этот раз в предвкушении.

Подробнее..

Физики зафиксировали тысячи молекул в одном квантовом состоянии

01.05.2021 18:17:16 | Автор: admin

Ух! Переда вами бозонный аналог перехода от конденсата Бозе-Эйнштейна к сверхтекучей жидкости Бардина-Купера-Шриффера в газе Ферми.

Автором нового исследования, опубликованное в журнале Nature, похоже удалось решить одну из самых важных задач квантовой физики они продемонстрировали как привести несколько молекул сразу в единое квантовое состояние. Напомню, что когда группа частиц, охлажденных до абсолютного нуля, разделяет единое квантовое состояние и вся группа начинает вести себя так, как если бы это был один атом, физики говорят о конденсате Бозе-Эйнштейна. Этого состояния, безусловно, достичь трудно, но когда это происходит, открывается целый мир новых возможностей. Ученые проделывали это с атомами на протяжении десятилетий, но проделай они то же самое с молекулами, сегодня мы, вероятно, обладали бы разными формами квантовых технологий. Но поскольку молекулы больше атомов и имеют гораздо больше движущихся частей, большинство попыток обуздать их не увенчались успехом. Впрочем, так было до конца апреля этого года в ходе нового исследования команда физиков охладила атомы цезия, а затем ограничила молекулы таким образом, чтобы они находились на двумерной поверхности и могли двигаться только в двух направлениях. В результате получился набор практически идентичных молекул в едином квантовом состоянии.

Что такое конденсат Бозе-Эйнштейна

Как известно, и свертекучесть, и сверхпроводимость это результаты изменения в поведении скоплений квантовых частиц при низких температурах. Явление, связанное с этим, включает в себя создание совершенно нового состояния вещества. Помимо трех известных состояний вещества жидкостей, газов и твердых тел существует четвертое плазма. Она возникает при нагревании газа до температур, при которых атомы теряют электроны и превращаются в заряженные ионы. Ионы часто образуются в химических реакциях, например в той, где соль (хлорид натрия) растворяется в воде, производя ионы натрия и хлора, или в тех, при которых нагревается газ.

Интересно и то, что плазма является наиболее часто встречающимся веществом во Вселенной поскольку в основном из нее состоят звезды, которые составляют основную массу галактик (не считая темной материи). С плазмой мы сталкиваемся и в обычной жизни когда смотрим на пламя или на типы телевизоров с плоским экраном. Но на холодном конце шкалы температур имеется пятое состояние вещества конденсат Бозе-Эйнштейна.

Стандартная модель физики элементарных частиц разделяет частицы на две группы, которые не подчиняются принципу запрета: фермионы (электроны и кварки) и бозоны (фотоны). Бозоны обычно друг с другом не взаимодействуют и многие из них могут сосуществовать в одном квантовом состоянии.

Конденсат Бозе-Эйнштейна образуется, если охладить газ до почти абсолютного нуля.

В конденсате Бозе-Эйнштейна огромное число частиц связаны друг с другом таким образом, что эта связь позволяет им вести себя подобно одному большому бозону, наделяя вещество такими необычными свойствами, как способность захватывать свет. Название «бозе-эйнштейновский» отсылает к модели, используемой для описания коллективного поведения частиц «бозе-эйнштейновской» статистике одним из двух вариантов того, как могут вести себя квантовые частицы. Другой вариант это статистика Ферми-Дирака.

Интересуетесь физикой и новостями из мира высоких технологий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

Как зафиксировать молекулы в одном квантовом состоянии?

В ходе нового исследования, опубликованного в журнале Nature 28 апреля, команда ученых из Чикагского университета охладила атомы цезия почти до абсолютного нуля в этом состоянии каждый атом стационарен, а все электроны находятся на нижнем уровне; теоретически это происходит при -273,15 градусах по Цельсию (0 градусов по шкале Кельвина). Это происходило в несколько этапов.

Первым было охлаждение всей системы до 10 нанокельвинов на волосок выше абсолютного нуля. Затем они упаковали молекулы в ползучее пространство так, чтобы те были прижаты плашмя. «Как правило, молекулы хотят двигаться во всех направлениях, и если позволить им это, то они становятся менее стабильны. Мы ограничили молекулы таким образом, чтобы они находились на двумерной поверхности и могли двигаться только в двух направлениях», пишут авторы исследования.

Читайте также: Почему квантовая физика сродни магии?

Проф. Чен Чин в лаборатории в Чикагском университете. Его лаборатория объявила о прорыве в приведении нескольких молекул в одно квантовое состояние. Это одна из самых важных целей в квантовой физике.

В результате получился набор практически идентичных молекул выстроенных в линию с абсолютно одинаковой ориентацией, одинаковой частотой колебаний и в одном и том же квантовом состоянии. Ученые описали этот молекулярный конденсат как чистый лист новой чертежной бумаги для квантовой инженерии.

«Это абсолютно идеальная отправная точка. Например, если вы хотите создать квантовые системы для хранения информации, вам нужно начать с чистого листа, прежде чем вы сможете отформатировать и сохранить эту информацию», отметил ведущий автор исследования Чен Чин из Чикагского университета в интервью изданию Sciencealert.

Примечательно, что до сих пор ученым удавалось связать вместе до нескольких тысяч молекул в таком состоянии и они только начинают исследовать его потенциал. Как объясняют авторы научной работы, в традиционном понимании химии мы обычно думаем о том, что несколько атомов и молекул сталкиваются и образуют новую молекулу. Но в квантовом состоянии все молекулы действуют вместе, проявляя коллективное поведение. Это открывает совершенно новый способ изучения того, как молекулы могут взаимодействовать друг с другом, чтобы превратиться в молекулы нового типа.

Вам будет интересно: Действительно ли мир стоит на пороге открытия новой физики?

Результаты работы, как надеются ее авторы, в будущем могут лечь в основу форм квантовых технологий. Помимо прочего, благодаря своей богатой энергетической структуре холодные молекулы могут способствовать прогрессу в квантовой инженерии и квантовой химии. В общем, на лицо все свидетельства того, что в скором времени нас ожидаем много удивительных открытий.

Подробнее..

Корпускулярно-волновой дуализм подтвердили экспериментально. Что это значит?

26.08.2021 02:02:21 | Автор: admin

Перед вами первый в истории снимок света и как волны, и как частицы. Фото сделано в лаборатории Фабрицио Карбоне (Fabrizio Carbone) в Федеральной политехнической школе Лозанны

Иногда вещи, которые на первый взгляд кажутся невероятно простыми, на самом деле оказываются чуть ли не самыми сложными. Взять, к примеру, свет. Древние цивилизации испытывали больше трудностей в понимании его природы, чем в понимании вещества чего-то, к чему можно прикоснуться. Сегодня мы знаем, что свет это не только способ переноса энергии от Солнца к Земле, делающей жизнь на нашей планете возможной, но и невидимая сеть из фотонов, которая позволяет электромагнетизму работать на расстоянии. Интересно, что до конца XVII века существовало две противоположные теории света. Так, Ньютон считал, что свет состоит из крошечных частиц, которые он назвал корпускулами. Но другие ученые, включая современников английского физика, полагали, что свет состоит из волн, как рябь, движущаяся по поверхности воды. Многим позже шотландскому физику Джеймсу Клерку Максвеллу удалось объединить Ньютоновские корпускулы и волновую теорию света, создав теорию, в которой эти явления были хорошо собраны воедино.

Интересный факт
В работе 1801 года английский физик Томас Юнг описал создание двух узких пучков лучей, идущих от одного и того же источника. Опыт показал, что световые волны интерферируют друг с другом, приводя к появлению на экране темных и светлых полос. Используя пару узких щелей Юнг в конечном итоге заставил свет охватить весь листок бумаги.

Природа света

Сегодня мы знаем, что свет может вести себя как частица и как волна. Но достигнуть этого понимания было непросто. Так, к началу XIX века было известно, что волны света могут интерферировать друг с другом (то есть усиливать или ослаблять друг друга).

Если бросить в воду два камушка, в некоторых точках водной глади волны от этих камней будут одновременно подниматься, усиливая друг друга и порождая интенсивную волну. При этом в других точках они будут колебаться в противоположных направлениях и гасить друг друга. В ходе эксперимента Томас Юнг увидел на листе бумаги светлые и темные полосы это означает, что световые волны подвергались такому же процессу интерференции.

Интерференция волн. Изображение: Юлия Кузьмина для ПостНауки

Основоположником волновой теории света был Христиан Гюйгенс, развивал ее Опасен-Жен Френель, а Джеймс Клерк Максвелл описал электромагнитное поле и электромагнитное излучение в своих уравнениях, сделав возможным понимание природы света. На основе интерференции можно строить голограммы и объяснить интерференцию и дифракцию.

Однако свет можно также рассматривать как поток частиц фотонов или квантов света. В основе корпускулярной теории лежат идеи Исаака Ньютона. В ХХ веке эти положения развил Макс Планк. Интересно, что используя представление о свете как о потоке частиц, можно объяснить фотоэффект и теорию излучения. В настоящее время считается, что свет может проявлять себя и как волна и как поток частиц.

Читайте также: Расплетая радугу как тайны света привели человечество к открытию темной материи?

Корпускулярно-волновой дуализм

Итак, свет может в любой момент времени вести себя как частица или волна, однако демонстрировать одно из двух состояний одновременно он не может. Если эксперимент требовал от него свойств волны, то свет вел себя как волна и то же самое для частицы. Позже этот принцип стал известен как корпускулярно-волновой дуализм.

Эту по-настоящему странную картину в итоге удалось завершить французскому физику Луи де Бройлю в 1924 году. Если свет, который рассматривается как волна, может вести себя как поток частиц, то, возможно, частицы, например электроны, могут вести так, как если бы они были волнами.

Древние греки считали, что свет является формой огня, предполагая, что он направлялся из глаз к объектам, которые человек мог видеть.

По сути, концепция де Бройля иллюстрировала, насколько квантовая физика подрывала старые предположения, ведь составляющими веществами материи были электроны, или вещества, а фотоны образовывали невидимый свет. И тем не менее, при некоторых обстоятельствах они вели себя как волны, а при других как частицы. Как только квантовый мир ворвался в мир классической физики, прежние различия стали менее определенными.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

Между тем, идея о том, что электроны могут проявлять волновые свойства, отлично вписывалась в модель атома Нобелевского лауреата Нильса Бора. В ней электрон мог занимать только определенные орбитали вокруг ядра и прыгать между орбиталями в квантовых скачках при потере или получении энергии в виде фотона. Напомню, что структура волны электрона, окружающая ядро атома, также известна под названием «орбиталь».

Квантовая революция

Основоположник современной атомной физики, Нильс Бор, пытался разрешить экзистенциальную дилемму квантовой механики. Он изобрел принцип дополнительности, согласно которому в некоторых экспериментах квантовые объекты будут локализованы и действовать как частицы, а в других различных экспериментах точно такой же квантовый объект будет распространяться и действовать как волна.

В 2018 году исследователи из Университета Рочестера в статье, опубликованной в научном журнале Optica, сообщили, что разрешили эту странную и неизбежную корпускулярно-волновую двойственность, обнаружив тесную связь между двойственностью и другой столь же странной особенностью квантовой механики, а именно квантовой запутанностью. Подробнее о том, что представляет собой это удивительное явление, я рассказывала в этой статье.

Ведущий автор исследования Сяофэн Цянь и его коллеги пришли к выводу, что каждая из особенностей квантовой странности запутанность и двойственность точно контролирует другую.

Запутанность это квантово-механическое поведение двух частиц, в котором ни одна из них не может быть описана отдельно, независимо от описания другой, даже если частицы разделены огромным расстоянием. Это то же самое свойство, которое нобелевский лауреат по физике Эрвин Шредингер использовал для объяснения своего знаменитого мысленного эксперимента с участием кошки, счетчика Гейгера и небольшого количества яда в запечатанной коробке.

Совсем недавно запутанность стала важным элементом в продолжающемся развитии квантовых вычислений и квантовой информатики.

Новое открытие вытекает из открытия о двойственности, сделанного Уильямом Вуттерсом и Войцеком Зуреком, двумя аспирантами-физиками Техасского университета в Остине, когда они размышляли о знаменитом эксперименте по оптике, проведенном Томасом Юнгом. В 1979 году Вуттерс и Зурек предсказали, что в одном и том же эксперименте можно измерить как волнообразное рассеяние, так и частичную локализацию света, но сумма измеренных величин не может быть больше.

Исследователи из Рочестера, однако, отмечают, что эксперимент с двумя щелями Юнга также может привести к тому, что обе меры будут равны нулю, что противоречит принципу дополнительности Бора. Согласно общепринятой интерпретации, это означает, что ни частицы, ни волны нет, но свет все еще можно обнаружить, говорит Цянь.

Это исследование мало назвать революционным результатом является первое полное описание взаимодополняемости недостающей части головоломки квантовой запутанности. Описывая способ учета запутанности, наряду с наличием волн и частиц, работа исследователей из Рочестера означает, что каждый эксперимент Юнга, связанный с двойственностью, даст измеренную сумму с точным значением, которая удовлетворяет условиям, изложенным Бором более девяти десятилетий назад.

Вам будет интересно: Что квантовая физика может рассказать о природе реальности?

Новые особенности

Но вернемся к корпускулярно-волновому дуализму. Для количественной проверки его фундаментального принципа и взаимодополняемости необходима квантовая составная система, которой можно управлять с помощью экспериментальных параметров. После того, как Нильс Бор ввел концепцию «взаимодополняемости» в 1928 году, лишь несколько идей были проверены экспериментально.

Таким образом, концепция дополнительности и корпускулярно-волнового дуализма все еще остается неуловимой и еще не полностью подтверждена экспериментально.

Но эта проблема, как и любая другая, имеет решение. Так, исследовательская группа из Института фундаментальных наук (IBS, Южная Корея) воспользовалась результатами опытов в «схеме однофотонной интерферометрии с частотной гребенкой» (оптическая схема, которую физики использовали для демонстрации однофотонной интерферометрии с частотной гребенкой, для проверки предсказанных ранее соотношения дополнительности).

Новое, разработанное исследователями устройство двухлучевой интерферометр генерирует фотоны когерентного сигнала (кванты), которые используются для измерения квантовых помех. Затем кванты проходят по двум отдельным путям, прежде чем достичь детектора.

Сопряженные холостые фотоны используются для получения информации о пути частиц с контролируемой точностью, что позволяет количественно оценивать комплементарность, пишет портал Phys.org со ссылкой на исследование.

Схема эксперимента. PPLN1 и PPLN2 это СПР кристаллы, BS1, BS2 и BS3 светоделители, DA и DB детекторы холостой моды. PD фотодетектор, фиксирующий квантовую интерференцию между сигнальными фотонами.
T. H. Yoon / Science Advances, 2021; Перевод N+1

Физики также отмечают, что данные, полученные ими на этой установке ранее, могут быть использованы для исследования связи предсказуемости, видимости и квантовой запутанности. В ходе эксперимента им удалось управлять числом фотонов в «холостых модах» с помощью маломощного лазера и, следовательно, чистотой состояний сигнальных фотонов. Полученные результаты продемонстрировали, что экспериментальные данные довольно точно описываются выведенными соотношениями.

Интересный факт
Как пишет в своей книге "Физика для каждого образованного человека" Спектор Анна Артуровна, фотоэлементы сделали возможным звуковое кино. На кинопленку стали наносить звуковую дорожку прозрачные окошки различной площади. Свет через них достигал фотоэлемента, затем преобразовывался в электрический сигнал и подавался на громкоговоритель.

В целом, из всего вышеописанного можно сделать вывод, к которому в свое время пришел один из выдающихся исследователей ХХ века, физик Ричард Фейнман. «Решение загадки квантовой механики заключается в понимании эксперимента с двумя щелями», писал он.

Все потому, что результаты нового исследования, вероятно, будут иметь фундаментальные последствия для лучшего понимания принципа дополнительности и количественного соотношения двойственности волны и частицы. Вообщем, фундаментальные силы природы, кажется, все больше поддаются изучению.

Подробнее..

Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?

01.10.2021 02:03:59 | Автор: admin

Согласно Многомировой интерпретации квантовой механики, существует множество миров, расположившихся параллельно в том же пространстве и времени, что и наш с вами дом

Ну что, поговорим немного о квантовой механике? Согласна, довольно сложная тема, но эта сложность лишь придает ей пикантности и остроты. Как и многочисленные предположения о существовании Мультивселенной и параллельных реальностей. К слову сказать, современная физика изобилует подобными идеями, но мы с вами остановимся на одной из, по моему скромному мнению, самых интересных из них многомировой интерпретации квантовой механики или интерпретации Эверетта. В 1954 году, будучи аспирантом Принстонского университета, физик Хью Эверетт пришел к революционной интерпретации нерелятивистской квантовой механики, которую полностью развил за два последующих года. Однако научное сообщество не придало особого внимания трудам Эверетта, так как работа не вела к новым предсказаниям и к тому же выглядела парадоксальной и в целом ненужной. Более того, его труд никак не повлиял на основную линию развития теоретической физики и создание Стандартной модели физики элементарных частиц. И все же, десятилетия спустя работа Эверетта привлекла внимание космологов. И хотя практических последствий она по-прежнему не принесла, это не значит, что видение мира, описанное в работе выдающегося физика, не стоит нашего с вами внимания.

Многомировая интерпретация квантовой механики

Итак, для начала давайте оговорим кое-что важное: когда физики размышляют о Мультивселенной, скорее всего, они думают о космологической мультивселенной. Да, звучит как минимум грандиозно, но так оно и есть. Просто речь идет не о наборе отдельных вселенных. Скорее, эти идеи относится к совокупности областей пространства, настолько далеких, что они для нас попросту ненаблюдаемы. К тому же, там действуют свои, неизвестные для нас законы.

Некоторые физики считают, что могут существовать разные частицы, разные силы, даже разное количество измерений пространства по сравнению с тем, что мы видим вокруг нас.

Но что такое космологическая вселенная? Удивительно, но объяснение звучит проще, чем кажется наука космология изучает свойства и эволюцию Вселенной. Ни больше ни меньше. А Вселенная, как мы знаем, та еще штучка родилась около 14 миллиардов лет назад и с тех пор расширяется, расширяется и расширяется со все возрастающей скоростью.

Вселенная, как мы знаем сегодня, расширяется с ускорением. Но почему это происходит физики сказать не могут.

Больше по теме: Гайд по теории Мультивселенной: существуют ли другие миры?

И когда физики говорят о космологической вселенной они вовсе не веселятся, воображая бесконечное множество копий самих себя, как, например, в мультсериале «Рик и Морти», главные герои которого с помощью «портальной пушки» путешествуют по этому самому Мультиверсу, нередко уничтожая целые миры. Нет, физики, конечно, любят смотреть на путешествия вечно пьяного дедули и его робкого внука и размышлять о подобном, но идея космологической вселенной естественно возникает как следствие других (не менее спекулятивных идей), включая теорию струн и космологическую инфляцию.

Многие исследователи полагают, что так как эти идеи сами по себе являются умозрительными, космологическую мультивселенную следует рассматривать как умозрительную в квадрате. Безусловно, она действительно может существовать, но единственное, что можно сказать по этому поводу прямо сейчас мы не знаем.

Однако множественные «миры» квантовой механики это нечто совершенно иное. Они находятся недалеко но лишь потому, что они вообще нигде не «расположены». И они естественным образом вытекают из простейшей версии нашей наиболее проверенной физической теории квантовой механики.

Чтобы всегда быть в курсе последних новостей из мира науки и высоких технологий, подписывайтесь на наш новостной канал в Telegram. Так вы точно не пропустите ничего интересного!

Квантовая механика Мультивселенной

Но чтобы понять почему это так, следует вспомнить как работает квантовая механика. Давайте рассмотрим электрон элементарную частицу, имеющую определенное фиксированное значение величины, называемой спином. Когда мы измеряем его вращение, то получаем только один из двух возможных ответов: он вращается вверх или вниз относительно любой оси, которую мы использовали для его измерения.

Наш мир намного больше и сложнее, чем мы можем себе представить. Но шанс разгадать фундаментальные тайны Вселенной у нас есть.

Странно, да? Почему всего два возможных ответа? Но еще более странно то, что мы не всегда можем предсказать, каким будет результат измерения. Мы можем подготовить электрон в суперпозиции спина вверх и спина вниз, так что будет некоторая вероятность наблюдения каждого результата. Напомним, что физики описывают состояние электрона в терминах «волновой функции», которая демонстрирует какая часть состояния электрона имеет спин «вверх», а какая »вниз». Также ученые используют волновую функцию для вычисления вероятности каждого результата измерения.

Читайте также: Тайны квантовой механики что такое квантовая запутанность?

Однако чем больше экспериментов проводят ученые, и чем глубже становится их понимание квантовой механики, тем больше кажется, что волновая функция действительно существует. Она не просто характеризует наши знания, это реальное физическое состояние электрона.

Таким образом, все квантовые предметы можно описать лишь с помощью вероятностей, а волновая функция и вовсе дарит шанс на существование любого количества различных состояний, в которых может находиться объект. Но стоит начать наблюдать за ним, или измерить его, как объект принимает одно из известных состояний по крайней мере, с вашей точки зрения.

Волновая функция квантовых состояний

Интересно и то, что волновая функция, скажем так, разделяет физиков. Многие придерживаются Копенгагенской интерпретации, согласно которой мы никогда не сможем узнать, что происходит в этой нечеткой области предварительного измерения. Другими словами, квантовая теория делает предсказания о реальности, но ничего не говорит о том, как именно она устроена.

Это интересно: Физики полагают, что параллельные вселенные существуют и скоро это можно будет доказать

Интерпретация Эверетта

Итак, мы выяснили, что измерение это взаимодействие квантового объекта с прибором. В результате этого взаимодействия измеряемый объект переходит из одного макростсояния в другое. И вот тут-то, как говорится, собака зарыта согласно копенгагенской интерпретации такова наша объективная реальность, для существования которой не нужны дополнительные обоснования. И Хью Эверетт высказался против подобной трактовки.

По Эверетту, волновая функция не коллапсирует. Это означает, что существует бесконечное множество параллельных копий воплощений нашей физической реальности, ведь волновая функция описывает единый квантовый мир бесконечный набор возможных состояний. Измерение этих состояний позволяет физикам выделять классические проекции, в которых они сами и находятся в качестве наблюдателей. И если результат измерения это выбор из всего двух состояний (спин вверх или спин вниз), то после измерения в дело вступает волновая функция, порождая два мира, в одном из которых спин вверх, а в другом вниз.

Хью Эверетт. Изображение: TASS Наука

Как пишет физик Алексей Левин в статье Тасс, можно предположить, что различные ветви единой волновой функции, описывающие параллельные миры, осциллируют во времени не в фазе и потому друг для друга как бы не существуют.

Эрвин Шредингер, основатель квантовой теории, который глубоко скептически относился к ее правильности, подчеркивал, что эволюция квантовых систем естественным образом приводит к состояниям, которые могут быть измерены как обладающие совершенно иными свойствами. Его «кот Шредингера», как известно, увеличивает квантовую неопределенность в вопросах о смертности кошек. До измерения кошке нельзя присвоить свойство жизни (или смерти). И то, и другое или ни то, ни другое сосуществуют в целой преисподней возможностей.

Повседневный язык плохо подходит для описания квантовой дополнительности, отчасти потому, что повседневный опыт с ней не сталкивается. Практические кошки взаимодействуют с окружающими молекулами воздуха, среди прочего, совершенно по-разному в зависимости от того, живы они или мертвы, поэтому на практике измерение производится автоматически, и кошка продолжает жить (или умирать).

Разыскивается кот Шредингера! Живым или мертвым!

Но запутанные истории описывают вопросы, которые в реальном смысле являются котятами Шредингера. Их полное описание требует, чтобы в промежуточные моменты времени мы учитывали обе из двух противоречивых траекторий свойств.

Контролируемая экспериментальная реализация запутанных историй является деликатной, потому что она требует, чтобы мы собирали частичную информацию о нашем измерении. Обычные квантовые измерения как правило собирают полную информацию за один раз например, они определяют определенную форму или определенный цвет а не частичную информацию, охватывающую несколько раз.

Но это можно сделать действительно, без больших технических трудностей. Таким образом, физики могут придать определенное математическое и экспериментальное значение распространению идеи множественности миров в квантовой теории и продемонстрировать ее обоснованность.

Не пропустите: Почему физики считают, что мы живем в Мультивселенной?

Выводы

В заключение хочу добавить, что сам сам Эверетт никогда не продвигал идею множественности миров или Мультивсерса. Еще до того, как он защитил докторскую диссертацию, он принял предложение о работе в Пентагоне и занимался проблемами холодной войны (некоторые его работы были настолько секретными, что до сих пор засекречены) и, по сути, исчезли с академического радара. Только в конце 1960-х годов идея набрала некоторый импульс, когда ее подхватил и с энтузиазмом продвигал Брайс Девитт из Университета Северной Каролины, который написал:

Каждый квантовый переход, происходящий в каждой звезде, в каждой галактике, в каждом отдаленном уголке Вселенной, расщепляет наш локальный мир на Земле на мириады копий самого себя.

Законы взаимодействия частиц кардинально отличаются от законов видимого мира

Вам также будет интересно: Существуют ли доказательства того, что мы живем в Мультивселенной?

Интересно и то, что первая версия докторской диссертации Эверетта (позже измененная и сокращенная) на самом деле называлась «Теория универсальной волновой функции». И под «универсальным» Эверетт подразумевал следующее:

Поскольку утверждается универсальная значимость описания функции государства, можно рассматривать сами функции государства как фундаментальные сущности, и можно даже рассматривать государственную функцию всей вселенной. В этом смысле эту теорию можно назвать теорией «универсальной волновой функции», поскольку предполагается, что вся физика вытекает только из нее.

И все же, множество вопросов остаются без ответа. Но это нормально, так как физики любят решать сложные вопросы. Так что мы должны быть благодарны за то, что Хью Эверетт завещал нам богатый набор параллельных вселенных, в одной из которых, мы, судя по всему, и находимся. Так что смело передаю привет самой себе из параллельной вселенной, чем бы другая «я» сейчас не занималась.

Подробнее..

Что такое кристаллы времени и почему ученые ими одержимы?

02.10.2021 00:05:41 | Автор: admin

Кристалл времени новая фаза материи, которую физики пытались реализовать в течение многих лет

О чем вы думаете когда слышите о кристаллах времени? Мне сразу представляется что-то наподобие тессеракта из мультивселенной Марвел или очередное безумное изобретение гениального Рика из «Рик и Морти». Только представьте таинственные кристаллы времени, способные перенести их обладателя как в прошлое, так и в будущее. Но, я, конечно, пересмотрела научной фантастики и в реальности кристаллы времени или кристаллы Вильчека не способны перемещать кого-либо или что-либо во времени. И все же, физики ими буквально одержимы. Причина этой одержимости на самом деле проста: по сути, кристалл времени это особая фаза материи, которая постоянно меняется, но, похоже, не использует энергии. Только представьте, объект, части которого движутся в регулярном, повторяющемся цикле, поддерживает это постоянное изменение без сжигания какой-либо энергии. Вообще. Кристаллы времени также являются первыми объектами, которые спонтанно нарушают «симметрию перемещения во времени» обычное правило, согласно которому стабильный объект будет оставаться неизменным на протяжении всего времени. Кристаллы времени одновременно стабильны и постоянно меняются через определенные промежутки времени.

Что такое «кристаллы времени»?

В 2012 году лауреат Нобелевской премии по физике Фрэнк Вильчек предположил существование нового типа кристалла. Так как большинство кристаллов имеют повторяющуюся в двух или трех измерениях структуру, Вильчек представил иную концепцию кристалла, структура которого воспроизводится четырежды: три из них соответствуют измерениям пространства, а четвертое измерению времени.

Если вы думаете о кристаллах в пространстве, то вполне естественно также подумать о классификации поведения кристаллов во времени, говорил он тогда.

Так как новой структуре требовалось название, Вильчек обозначил ее «кристаллом времени». И эта история, вероятно, так бы и осталась гипотетической, если бы в 2018 году ученые не поняли, как эти необычные структуры можно синтезировать в лабораторных условиях. Сегодня физики считают, что кристаллы времени могут формироваться в естественной среде, а сам процесс намного проще, чем предполагали большинство исследователей.

Изображение и перевод источник

На самом деле многие называют временные кристаллы удачей для человечества, так как их можно использовать в практических целях, например, при создании сверхточных атомных часов, гироскопов и других устройств. А еще они представляют мощнейший потенциал для развития квантовых компьютеров.

Это интересно: Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?

Таким образом, кристалл времени это новая категория фаз материи, расширяющая определение того, что такое «фаза». Все другие известные фазы, такие как вода или лед, находятся в тепловом равновесии: составляющие их атомы перешли в состояние с наименьшей энергией, допускаемой температурой окружающей среды, и их свойства не меняются со временем.

А вот кристалл времени — это первая фаза «выхода из равновесия»: он обладает порядком и совершенной стабильностью, несмотря на то, что находится в возбужденном и развивающемся состоянии.

Кристаллы Вильчека предлагают совершенно новый взгляд на эти объекты

Интересно и то, что кристаллы времени также являются первыми объектами, которые спонтанно нарушают «симметрию перемещения во времени» обычное правило, согласно которому стабильный объект будет оставаться неизменным на протяжении всего времени. Временной кристалл одновременно стабилен но при этом постоянно меняется не поглощая никакой энергии.

Чтобы всегда быть в курсе последних новостей из мира науки и высоких технологий, подписывайтесь на наш новостной канал в Telegram. Так вы точно не пропустите ничего интересного!

Немного квантовой механики

Рассмотрим алмаз кристаллическую фазу скопления атомов углерода. Скопление управляется одними и теми же уравнениями повсюду в пространстве, но оно принимает форму, которая имеет периодические пространственные изменения, с атомами, расположенными в точках решетки. Физики говорят, что таким образом происходит «спонтанное нарушение симметрии переноса пространства» только состояния равновесия с минимальной энергией спонтанно нарушают пространственную симметрию таким образом.

По сути, Вильчек представил себе многокомпонентный объект в равновесии, очень похожий на алмаз. Но этот объект нарушает симметрию перемещения во времени: он подвергается периодическому движению, возвращаясь к своей первоначальной конфигурации через регулярные промежутки времени.

При этом изначально предложенный Вильчеком временной кристалл сильно отличался, скажем, от настенных часов объекта, который также подвергается периодическому движению. Стрелки часов сжигают энергию и останавливаются, когда садится батарея. Кристалл времени Вильчека работает бесконечно, поскольку система находится в своем сверхстабильном равновесном состоянии.

Понять что такое кристаллы времени сложно. Но физики любят решать сложные задачи

Итак, давайте представим ряд частиц, каждая из которых имеет магнитную ориентацию (спин), которая указывает вверх, вниз или с некоторой вероятностью в обоих направлениях. Теперь представим, что первые четыре вращения изначально направлены вверх, вниз, вниз и вверх. Спины будут квантово механически колебаться и быстро выравниваться, если смогут.

Но случайное взаимодействие между ними может привести к тому, что ряд частиц застрянет в своей определенной конфигурации, не в состоянии перестроиться или установить тепловое равновесие. Они будут указывать вверх, вниз, вниз и вверх бесконечно.

Больше по теме: Может ли квантовая механика объяснить существование пространства-времени?

Как недавно обнаружили исследователи, локализованные системы со многими телами могут демонстрировать особый порядок, который станет вторым ключевым компонентом кристалла времени: если перевернуть все вращения в системе (в нашем примере вниз, вверх, вверх и вниз), мы получим другое стабильное локализованное состояние со многими телами. Более того, недавно исследователям удалось поместить кристаллы времени в квантовый компьютер.

Кристаллы времени и квантовые компьютеры

Важно понимать, что кристаллы времени, как и другие квантовые явления, нарушают некоторые известные физические законы в частности, первый закон движения Исаака Ньютона. И если ученым действительно удалось поместить кристаллы Вильчека в квантовый компьютер как указано в препринте научной работы их открытие может изменить мир всего за одну ночь.

Да-да, кристаллы времени способны в корне изменить правила игры для квантовых компьютеров. В конце концов, они работают на самом важном молекулярном и даже частичном уровне, извлекая выгоду из таких идей, как прохождение электронов вокруг твердых материалов (буквально, что такое электричество!), и, по-хорошему, представляют собой огромную проблему для ученых.

Кристаллы времени и квантовые компьютеры могут изменить мир

На более практическом уровне существуют способы, с помощью которых квантовые компьютеры предлагают особый доступ к идеям, с которыми традиционные электронные компьютеры просто не могут справиться. Именно здесь вступают в игру кристаллы времени если последующая экспертная оценка покажет, что выводы авторов нового исследования является достоверными.

Вам будет интересно: В Китае создан квантовый компьютер, который решил самую сложную задачу за 200 секунд

Электронные компьютеры, подобные тому, на котором вы, возможно, читаете эту статью, используют логические элементы, которые включаются и выключаются, поэтому все в вашем компьютере зависит только от двух состояний: включено и выключено, светло и темно, 1 и 0, словом, вся двоичная система. Введение кубитов (квантовых битов, которые часто представляют собой один атом элемента с тщательно контролируемым электроном) еще сильнее усложняет ситуацию, как за счет добавления большего количества возможных состояний (а не просто вкл-выкл), так и за счет добавления всей основы квантовой неопределенности.

Теперь представьте, что число от 1 до 100 на самом деле является результатом чего-то вроде плана создания вечного двигателя. На самом деле существуют тысячи, миллионы или даже больше возможностей. Вместо того чтобы пытаться «заставить» двоичный компьютер выполнять работу неудобным способом, квантовый компьютер мог бы помочь ученым более естественно представить, что происходит.

Команда Google и еще 100 ученых из разных стран трудятся над созданием квантового компьютера

Именно здесь кристаллы времени открывают море возможностей, а не только квантовые вычисления кубитов. Кристаллы времени стабильны, но пульсируют с интересными интервалами, что означает, что они могут помочь ученым изучать такие вещи, как повторяющиеся закономерности или случайные числа с аналогичными последствиями в естественных науках и за их пределами.

Читайте также: Что квантовая физика может рассказать о природе реальности?

Как ученые создали кристаллы времени

В ходе нового исследования группа из более чем 100 ученых со всего мира работала вместе с командой Google Quantum AI (совместной инициативой Google, НАСА и некоммерческой ассоциации космических исследований университетов, цель которой ускорить исследования в области квантовых вычислений и компьютерных наук). В статье ученые описывают создание специальной микроскопической установки, в которой временной кристалл окружен сверхпроводящими кубитами.

Квантовый компьютер находится внутри криостата, который представляет собой камеру переохлаждения с регулируемой температурой, которая поддерживает все материалы при правильной, чрезвычайно низкой температуре для продвинутых состояний, таких как сверхпроводящие или кристаллы Вильчека.

Возможно в самом ближайшем будущем будут созданы невероятно быстрые и мощные квантовые компьютеры

Как пишет Quanta Mafgazine, если выводы исследователей подтвердятся, то это будет первая полностью успешная демонстрация кристалла времени. В целом же, неудивительно, что Google возглавляет движение в направлении мощных квантовых вычислений, ну а мы с вами будем ждать экспертной оценки и дальнейших исследований. Кто знает, может быть кристаллы времени и квантовые компьютеры и правда многое изменят.

Подробнее..

Ученые впервые сфотографировали кристаллы Вигнера. Рассказываем что это такое и как физикам это удалось

14.10.2021 02:14:53 | Автор: admin

Физики сделали первое в истории изображение кристалла Вигнера странного материала с ячеистым рисунком внутри другого материала, полностью состоящего из электронов.

Наша планета удивительна. Жизнь на ней настолько разнообразна, что существует множество тел и веществ, как естественных (животные и люди, планеты и звезды) так и искусственных (созданных человеком). Эти вещества и тела бывают твердыми и жидкими, например, вода и кристаллы. Последние особенно интересны, так как представляют собой твердые тела, атомы в которых расположены закономерно, образуя так называемую кристаллическую решетку. По сути, естественное состояние кристалла это форма правильных симметричных многогранников, которая основана на их внутренней структуре. То есть на одном из нескольких определенных и регулярных расположений, составляющих вещество частиц (ионов, атомов и молекул). Согласитесь, действительно интересно. Именно так в 1934 году размышлял Юджин Вигнер, один из основателей теории симметрии в квантовой механике. Он предсказал, что электроны в материалах теоретически могут выстраиваться в правильные кристаллические структуры, благодаря тому, что отталкиваются друг от друга. Таким образом, если энергия кристаллического отталкивания между парой электронов больше, чем энергия их движения, то их расположение приведет к тому, что полная энергия будет наименьшей, а мы получим систему, аналогичную твердому телу.

Кристаллы Вигнера

Несмотря на размышления знаменитого физика, его кристаллы на протяжении десятилетий оставались исключительно теоретической конструкцией. Причина заключается в том, что Вигнеровские кристаллы могут образовываться только при экстремально низких температурах и малом количестве свободных электронов в материале.

Напомним, что энергия движения электронов значительно превосходит энергию электростатических взаимодействий. Этот фактор не позволяет упорядочить частицы, которые во много тысяч раз легче атомов, в единую систему.

Лауреат Нобелевсеой премии, физик-теоретик Юджин Вигнер.

Вопрос, поставленый Вигнером, долгое время являлся ведущим вызовом в области физики конденсированного вещества: в обычных условиях внутри проводника электроны практически не взаимодействуют друг с другом. Но стоит изменить условия, как электроны начинают «замерзать», превращаясь в систему, аналогичную твердому телу. Однако запечатлеть такой кристалл на камеру невероятно трудно, так что авторам нового исследования пришлось применить творческий подход.

Вигнеровский кристалл это кристалл, электроны в котором строго упорядочены, а потенциальная энергии их связи превышает кинетическую энергию движения.

Создать то, чего нет

Авторам нового исследования, опубликованного в журнале Nature 29 сентября, удалось (хоть и не впервые) создать максимально правдоподобный кристалл Вигнера и даже изучить его свойства. Собранные учеными визуальные данные являются наиболее убедительным доказательством существования этих удивительных объектов.

В прошлом многие исследователи создавали кристаллы Вигнера, и Nature News отмечает, что у них были некоторые убедительные доказательства. Так, летом этого года сразу три отдельные группы исследователей создали кристалл, полностью состоящий из электронов.

Захватывающее первое изображение кристалла Вигнера показывает электроны, сжатые в плотный повторяющийся узор, словно крошечные крылья голубой бабочки.

Больше по теме: Создан новый тип металла, в котором электроны ведут себя как жидкость

Чтобы понять, как физикам удалось создать Вигнеровский кристалл, напомним, что внутри обычных проводников, таких как серебро или медь, или полупроводников, таких как кремний, электроны проносятся так быстро, что едва успевают взаимодействовать друг с другом. Но при очень низких температурах они замедляются и начинают «ползать», а отталкивание между отрицательно заряженными электронами начинает преобладать. Таким образом, эти невероятно быстрые и подвижные частицы останавливаются и выстраиваются в повторяющийся, похожий на соты узор, при этом сводя к минимуму общее потребление энергии.

Чтобы лицезреть создание Вигнеровского кристалла, исследователи работали с полупроводниками толщиной в один атом, охлажденными до сверхнизких температур: физики поймали электроны в зазор между слоями толщиной в атом двух вольфрамовых полупроводников. Затем, проложив электрическое поле поперек зазора (чтобы избавиться от любых потенциально разрушительных избыточных электронов), ученые охладили свой «электронный сэндвич» до 5 градусов выше абсолютного нуля. И о чудо некогда быстрые электроны остановились, оседая в повторяющейся структуре кристалла Вигнера.

Еще больше интересных статей о последних научный открытиях в области квантовой механики и не только, подписывайтесь на наш канал в Яндекс.Дзен. Там регулярно выходят статьи, которых нет. на сайте!

Физики обрели способность замедлять движение электронов, превращая их в кристаллическую структуру.

Затем, с помощью устройства под названием сканирующий туннельный микроскоп (STM), исследователи просмотрели получившийся кристалл. Как пишет Live Science, STM работают, подавая небольшое напряжение на острый металлический наконечник, прежде чем запустить его прямо над материалом.

Это заставляет электроны прыгать с наконечника на поверхность материала. Скорость, с которой электроны отскакивают от наконечника, зависит от того, что находится под ними, поэтому исследователи могут создать изображение контуров 2D-поверхности, похожих на шрифт Брайля, путем измерения тока, протекающего по поверхности в каждой точке, сообщают авторы научной работы.

Однако ток, обеспечиваемый STM, поначалу был слишком велик для тонкого электронного льда, «плавя» его при контакте. Чтобы остановить это, ученые вставили одноатомный слой графена прямо над кристаллом Вигнера, позволяя кристаллу взаимодействовать с графеном. Это взаимодействие, в свою очередь, может спокойно считывать STM (почти как ксерокс).

Только представьте кристалл, состоящий из электронов действительно существует.

Полностью проследив изображение, отпечатанное на листе графена, STM сделал первый снимок кристалла Вигнера, доказав его существование вне всяких сомнений.

Зачем нужны кристаллы Вигнера?

Итак, получив убедительные доказательства существования этих удивительных объектов, ученые могут использовать их для поисков ответов на вопросы о том, как несколько электронов взаимодействуют друг с другом, например, почему кристаллы располагаются в виде сот и как они «плавятся». Ответы на эти вопросы могут подарить нам представление о некоторых из самых неуловимых свойств крошечных частиц.

Способность приручать электроны чего ученые достигли, используя мельчайшие различия в атомных структурах двух слоев вольфрама знаменует собой невероятное экспериментальное достижение, которое до сих пор ускользало от самых опытных лабораторий в области физики.

Что же открытий в квантовой механике, то тут также можно ожидать новостей квантовые флуктуации вблизи абсолютного нуля вызывают квантово-фазовые переходы между свободно текущими жидкостями и квантовыми кристаллами, такими как кристаллы Вигнера. Считается, что эти квантовые переходы важны во многих других квантовых системах.

Кристалл электронов Вигнера (красный) внутри полупроводникового материала.

Как только авторы нового исследования получили кристалл Вигнера и начали изучать его свойства, их коллеги из Гарварда решили подвергнуть полученную структуру «квантовому плавлению», которое, по-видимому, похоже на обычное плавление, но в таком малом масштабе, что и представить едва ли возможно. И все же, несмотря на возникающие сложности, первый снимок Вигнеровского кристалла однозначно продвинет исследования вперед.

Это интересно: Корпускулярно-волновой дуализм подтвердили экспериментально. Что это значит?

Так, например, уже известно, что кристаллы Вигнера незначительно изменили электронную структуру графена, которую мог уловить сканирующий туннельный микроскоп STM. Чтобы убедиться, что они создали именно кристалл Вигнера, физикам пришлось пинговать его отдельными фотонами, выбивая электрон и создавая так называемый «экситон», который они смогли обнаружить.

Новое открытие находится прямо на границе материи, переходящей от частично квантового материала к частично классическому материалу, и обладает многими необычными и интересными явлениями и свойствами, пишет Quana Magazine со ссылкой на авторов исследования.

Кристаллы представляют огромный интерес для ученых из самых разных областей науки.

И все же, чтобы окончательно понять, что предсавляют собой кристаллы Вигнера и где им можно найти применение, потребуется немало времени. Но мы, вроде, никуда не торопимся. К тому же, Вигнеровские кристаллы далеко не единственные. О том, что такое кристаллы времени и почему ученые ими одержимы, я рассказывала в этой статье, рекомендую к прочтению.

Подробнее..

Категории

Последние комментарии

© 2006-2021, umnikizdes.ru