Русский
Русский
English
Статистика
Реклама

Наука физика

Мифы о радиации. Что правда, а что нет

11.08.2020 20:19:42 | Автор: admin

Радиация опасна, но что-то о ней является мифам

Мутации, свечения и средства защиты Радиация это, наверное, то, вокруг чего намного больше мифов, чем вокруг чего-либо еще. Ее не видно и как она действует на человека, знают далеко не все. Тут еще и создатели боевиков на пару с создателями видеоигр придумывают дополнительные факты. В итоге, каждый думает, что хочет, но толком никто не может сказать, что же такое радиация и как с ней бороться. Мифов становится все больше и больше, а благодаря широкому распространению социальных сетей, они разлетаются иногда просто с пугающей скоростью. Давайте лучше разберемся, что из того, что мы знаем — мифы, а что — правда. Мы подготовили для вас несколько разоблачений. Приступим?

Защищает ли свинец от радиации

Считается, что свинец является чуть ли не единственным способом защититься от радиации. Что-то правдивое в этом утверждении есть, но полностью правдой считать это нельзя сразу по нескольким причинам.

В первую очередь надо понимать, что есть разные типы излучения. При разных типах радиации испускаются разные частицы, и не все они способны задерживаться свинцом. Есть те, для которых свинец просто бесполезен, а есть и те, для которых просто не нужен.

Как работает АЭС? Опасны ли атомные станции?

Например, альфа-излучение (ядра атомов гелия-4) очень эффективно задерживаются буквально тонкими тканями. То есть вам достаточно быть в одежде и очках. В этом случае излучение уже не доберется до вашей кожи или сделает это с очень слабыми значениями. Пострадать от этого вы не сможете.

Обратная ситуация с бета-излучением. Тут речь идет об электронах, которые имеют куда более низкую ионизирующую способность. При этом их проникающая способность, наоборот, намного выше. Впрочем, и тут достаточно какой-то небольшой защиты, например, фольги.

Фольга спасает от радиации, но так делать не стоит.

Есть еще и гамма-излучение. У него сравнительно небольшая ионизирующая способность, но при этом самая лучшая среди остальных типов излучения проникающая способность. Именно поэтому его считают наиболее опасным, так как от него достаточно сложно защититься. Считается, что именно от такого типа излучения и должен защищать свинец во всех его проявлениях.

Свинец действительно будет более эффективным, чем некоторые другие типы защиты. При одинаковой толщине защиты именно свинец задержит больше частиц из-за своей большей плотности, но и его нельзя считать панацеей от радиации.

Как работают атомные ледоколы и почему Россия лидирует в этом направлении

В первую очередь, надо понимать, что слой свинца все равно должен быть достаточно большим, чтобы хоть как-то защитить от серьезной опасности. Именно поэтому, когда речь идет о бункерах и атомных станциях, куда проще пользоваться чуть более Толстым слоем бетона. Он и в строительстве проще, и не такой токсичный. При этом токсичность является проблемой не только на производстве, но и во время нахождения в таком бункере.

Когда радиация действительно серьезная, то надо лезть в бункер, остально не поможет.

Правда ли радиоактивные вещества светятся

Во многом благодаря видеоиграм, вроде Half-Life и фильмам катастрофам, люди думают, что радиоактивные вещества светятся каким-то ярким светом, но это не так. Иногда радиолюминесценция — так называют связанное с радиоактивностью свечение — все же наблюдается, но крайне редко. Даже в тех случаях, когда свечение есть, оно вызвано не столько радиоактивностью материала, а сколько взаимодействием радиации с окружающими материалами.

Как захоранивают ядерное топливо, и как долго оно опасно

Примером могут служить часовые стрелки, которые применялись в механизмах 20-30-х годов прошлого века. Для свечения этих стрелок радий включали в краску на основе меди и сульфида цинка. В результате они светились зеленым и те часы, которые дожили до наших дней, все еще продолжают светится, что говорит о том, что излучение от них продолжается. Видимо от этого и пошло представление, что радиоактивные предметы и жидкости должны светиться.

На самом деле все не так.

В живой природе люминесценция тоже встречается, но у светлячков или растений она никак связана с радиацией и вызвана совершенно другими процессами. В случае с радиолюминесценцией, надо просто понимать, что возникает она крайне редко и только при взаимодействии с другими веществами. Даже соли урана, которые сами по себе имеют зеленый свет, не светятся при распаде.

Создана ли радиация человеком

Так как все случаи радиационного загрязнения природы и гибели людей связаны с деятельностью человека, принято считать, что радиация это в принципе творение рук человеческих, но это не так.

Самая большая подводная лодка и история создания субмарин

Радиация имеет полностью естественное происхождение. Она была до нас и будет, даже если мы сами или что-то уничтожит нас на нашей планете. Например, солнечные лучи это тоже радиация, просто она сильно отфильтрована нашей атмосферой. Хотя, в жарких странах, где лучи проходят через атмосферу по прямой, естественный радиационный фон достаточно высокий. Умереть от этого вряд ли получится, но на полюсах все же безопасней.

Загар — это прекрасно, но загорать надо с умом. не забывайте про крем.

Везде в космосе есть радиация. Все из-за того, что она является ничем иным, как высокоэнергетическими частицами, которые ионизируют атомы. В итоге они могут приводить к структурным изменениям и даже разрушать молекулы человеческого тела. Ядра некоторых атомов нестабильны и они могут, излучая частицы, переходить в стабильное состояние. В итоге и получается альфа-, бета- или гамма-излучение.

Эти частицы есть везде. Поэтому и существует понятие естественный радиационный фон. Он не причиняет вреда человеку, так как мы к нему адаптировались, но с избыточными дозами, вроде солнечных мест и зон радиационных испытаний или катастроф, лучше быть осторожным.

Когда мы пишем о радиации, это всегда вызывает большой резонанс среди наших читателей. Они пишут много комментариев, но куда активнее обсуждают это в нашем Telegram-чате. Можно буквально зачитаться. Да и самому поспорить об этом интересно.

Защищает ли йод от радиации

Йод совершенно никак не может защитить от радиации. Но в некотором роде помочь он может. Дело в том, что щитовидная железа накапливает йод для нужд организма. Во время радиационного выброса в воздухе и на различных предметах (включая продукты питания) находится много радиоактивного йода-131. Щитовидная железа устроена так, что она активно вбирает в себя любой йод, пока не заполнит хранилища. В итоге, во время радиационных катастроф рекомендуется принимать йод, чтобы щитовидная железа получила то, что ей надо. Лишний йод (радиоактивный) выведется из организма. В противном случае он может привести к развитию рака.

Простой йод из аптечки незаменим при некоторых видах загрязнений, но просто так пичкаться им не стоит.

О необходимости принимать йод должно сообщить МЧС. Если во время катастрофы в воздухе находится небольшое количество радиоактивного йода, то ударная его доза может только навредить организму. Это же относится и к другим веществам (включая витамины), которые считаются радиопротекторами. Если рядом есть АЭС, то лучше иметь запас этих веществ, но принимать их, только если скажут.

Ходить с дозиметром не обязательно. Если что-то случится, вам скажут. Должны, по крайней мере.

Может ли радиация стать причиной мутации

Многие люди смотрят фантастические фильмы и думают, что радиационное облучение открывает в организме новые супер-способности. На самом деле радиация действительно может привести к мутации, но только она крайне маловероятно будет настолько хорошей, что ее носителя возьмут в Люди Х.

Какие бывают мутации и чем они отличаются

Радиация способна повреждать спирали ДНК. Часто повреждение носит локальный характер и затрагивает только одну нить. В этом случае поврежденные участки могут замещаться нуклеотидами. Если повреждены обе нити, то полностью утрачивается генетическая информация, а клетка может запустить механизм самоуничтожения.

Примерно так и работает лучевая терапия для раковых больных. Даже раковые клетки могут саморазрушаться, если в них произойдут сильные структурные изменения. С другой стороны, обычная клетка может стать раковой, если получит повреждения.

Шутить с радиацией не стоит, но ее надо «знать в лицо» и понимать, как с ней бороться.

Сильно переживать по этому поводу не стоит, если вы соблюдаете элементарные правила безопасности. Например, если вы не находитесь под палящим солнцем без солнцезащитного крема. Фоновая радиация не способна причинить вред человеку, так как он привыкает к ней, но если вы на несколько дней переезжаете в район повышенной радиации, например, поближе к ядерному полигону или в жаркую страну, с этим надо быть очень осторожным. Клетки кожного эпителия могут повредиться. Одним из самых неприятных последствий является развитие меланомы, которая имеет очень плохие прогнозы с точки зрения лечения.

Помните, что мифы о радиации в основном касаются преуменьшения ее вреда. Поэтому берегите себя, более осторожно относитесь к жаркому солнцу, особенно в полдень, когда оно наиболее активно, и держитесь подальше от мест радиационных испытаний и катастроф.

Подробнее..

Почему наша Вселенная такая странная и существуют ли законы физики?

25.08.2020 00:04:08 | Автор: admin

Как хорошо мы знаем Вселенную, чтобы утверждать, что известные законы физики существуют?

Природа может быть разной для разных людей. Природа может быть чудесной. Природа может быть странной. У природы есть законы. Природа продолжает удивлять ученых, которые пытаются эти законы понять. За последние несколько десятилетий научное сообщество пришло к принятию концепции «естественности» это термин, придуманный Эйнштейном, который описывает изящно сложные законы природы. Ученые считают, что если Вселенная естественна, то ее можно объяснить математически. Но если ее природа неестественна, то некоторые законы физики произвольны и кажутся чрезвычайно тонко настроенными, чтобы позволить жизни (как мы ее знаем) возникнуть и существовать. И все же, ученые стремятся к единому описанию реальности. Но современная физика допускает множество различных описаний, многие из которых эквивалентны друг другу и связаны ландшафтом математических возможностей.

Тайны Вселенной

В череде обыденных будней может показаться, что мы знаем о мире и Вселенной достаточно, чтобы утвердительно ответить на вопрос о том, существуют ли все известные законы физики. Однако ученые, изучающие квантовый мир могут с этим не согласиться. Как пишет Quanta Magazine, физики нашли много примеров двух совершенно различных описаний одной и той же физической системы.

Итак, если физические ингредиенты это частицы и силы, то рецепты это математические формулы, кодирующие их взаимодействия. В таком случае, сам процесс приготовления пищи и есть процедура квантования, которая превращает уравнения в вероятности физических явлений. Вот почему квантовые физики задаются вопросом, как разные «рецепты приготовления» приводят к одинаковым результатам.

Еще больше увлекательных статей о том, как устроена наша Вселенная, читайте на нашем канале в Google News

Альберт Эйнштейн, как известно, считал, что, учитывая некоторые общие принципы, существует уникальный способ построить последовательную, функционирующую вселенную. С точки зрения Эйнштейна, если бы мы достаточно глубоко исследовали сущность физики, существовал бы один и только один способ, которым все компоненты материя, излучение, силы, пространство и время сочетались бы вместе, чтобы заставить реальность работать, подобно тому, как уникально сочетаются шестеренки, пружины, циферблаты и колесики механических часов.

Физика элементарных частиц

Современная Стандартная модель физики элементарных частиц действительно представляет собой плотно сконструированный механизм, состоящий всего из нескольких компонентов. Однако вместо того, чтобы быть уникальной, Вселенная кажется одним из бесконечного множества возможных миров. Мы понятия не имеем, почему именно эта комбинация частиц и сил лежит в основе структуры природы.

Возможно, мы живем в Мультивселенной

Кроме того, стандартная модель содержит 19 констант природы такие числа, как масса и заряд электрона, которые должны быть измерены в экспериментах. Значения этих «свободных параметров», по-видимому, не имеют более глубокого смысла.

Если наш мир всего лишь один из многих, то как мы можем существовать одновременно с альтернативными вселенными? Нынешнюю точку зрения можно рассматривать как полярную противоположность эйнштейновской мечте об уникальном космосе. Современные физики охватывают огромное пространство возможностей и пытаются понять его всеобъемлющую логику и взаимосвязь. Из золотоискателей они превратились в географов и геологов, детально описывающих ландшафт и изучающих силы, которые его сформировали.

Вам будет интересно: Почему физики считают, что мы живем в Мультивселенной?

Теория струн

Теория струн стала переломным моментом для современной физики. На данный момент она является единственной теорией, ближе всех подобравшейся к той самой «теории всего» мечте Альберта Энйштена, способную описать все частицы и силы, включая гравитацию, а также подчиняясь строгим логическим правилам квантовой механики и теории относительности.

Хорошей новостью во всей этой истории является то, что у теории струн нет циферблата (как у механических часов). Не имеет смысла спрашивать, какая теория струн описывает нашу Вселенную, потому что существует только одна. Отсутствие каких-либо дополнительных признаков приводит ученых к выводу о том, что все числа в природе должны определяться самой физикой. Они не являются «константами природы», а лишь переменными, фиксируемыми уравнениями (возможно, неразрешимо сложными).

Однако важно понимать, что существует сложное, огромное количество решений теории струн. В физике это не является чем-то необычным. Мы традиционно различаем фундаментальные законы, заданные математическими уравнениями и решения этих уравнений. Как правило, существует всего несколько законов, но бесконечное число решений. Возьмем законы Ньютона. Они четки и элегантны, но описывают невероятно широкий спектр явлений, от падающего яблока до орбиты Луны.

Если вы знаете начальные условия конкретной системы, то сила этих законов позволяет решать уравнения и предсказывать, что произойдет дальше. Мы не ожидаем и не требуем априори уникального решения, которое описывает все.

В теории струн некоторые особенности физики, которые мы обычно рассматриваем как законы природы такие как конкретные частицы и силы, на самом деле являются решениями. Они определяются формой и размером скрытых дополнительных измерений. Пространство всех этих решений часто называют «ландшафтом», но это преуменьшение. Даже самые впечатляющие горные пейзажи бледнеют в сравнении с необъятностью этого пространства.

Ландшафт Вселенной

Но как ученые изучают обширный ландшафт физических моделей Вселенной, которые легко могут иметь сотни измерений? Чтобы это понять, давайте представим себе ландшафт как в значительной степени неразвитую пустыню, большая часть которой скрыта под толстыми слоями неразрешимой сложности. Только на самых окраинах мы находим пригодные для жизни места. Здесь мы находим основные модели, которые полностью понимаем. Они не имеют большой ценности для описания реального мира, но служат удобной отправной точкой для изучения местных окрестностей.

Возможно, законов физики не существует

Хорошим примером может служить теория квантовой электродинамики (КТП), описывающая взаимодействие материи и света. Эта модель имеет единственный параметр, называемый константой тонкой структуры , которая измеряет силу силы между двумя электронами. В теории квантовой электродинамики все процессы можно рассматривать как возникающие из элементарных взаимодействий. Например, силу отталкивания между двумя электронами можно представить в виде обмена фотонами. КТП просит нас рассмотреть все возможные способы, которыми два электрона могли бы обмениваться фотоном, что на практике означало бы, что физики должны решить сложнейшую задачу, с бесконечным множеством решений.

Чтобы всегда быть в курсе последних новостой из мира науки и высоких технологий, подписывайтесь на наш канал в Telegram

Почему все это так волнительно для физики? Прежде всего, вывод о том, что многие, если не все, модели являются частью одного огромного взаимосвязанного пространства, является одним из самых удивительных результатов современной квантовой физики. Это изменение перспективы, достойное термина «сдвиг парадигмы». Он говорит нам, что вместо того, чтобы исследовать архипелаг из отдельных островов, мы обнаружили один огромный континент.

В некотором смысле, изучая одну модель достаточно глубоко, мы можем изучить их все. Мы можем исследовать, как эти модели связаны, освещая их общие структуры. Важно подчеркнуть, что это явление в значительной степени не зависит от того, описывает ли теория струн реальный мир или нет. Это неотъемлемое свойство квантовой физики, которое останется здесь, какой бы ни оказалась будущая теория всего.

Подробнее..

Взрывы, которые невозможно представить физики предсказали как погибнет наша Вселенная

28.08.2020 18:15:29 | Автор: admin

Осознание того, что наше существования непостоянно вызывает смешанные чувства

В череде размеренных будней мы не так часто задумываемся о чем-то глобальном и всеобъемлющем. Согласитесь, не так много людей каждый день всерьез размышляют о том, какое будущее ждет нашу Вселенную. А ведь если хорошенько поразмыслить окажется, что и о прошлом Вселенной известно не так уж много. И все же научный метод вооруженный воображением позволяет ученым выдвигать разнообразные теории относительно нашего общего будущего. Такие термины, как «тепловая смерть», «большой разрыв» и «вакуумный распад» на первый взгляд могут показаться пугающими, однако они описывают некоторые из теорий гибели нашей Вселенной. Все эти теории, как надеюсь известно читателю, описывают смерть Вселенной спустя миллиарды лет. Но что произойдет, если существование Вселенной закончится внезапно в этот самый момент?

Наша Вселенная

Когда космолог из университете Северной Каролины Кэти Мак думает о конце всего, это ее успокаивает. Такое мнение астрофизик высказала в интервью Радио 1 Newsbeat. Доктор Кэтрин Мак занимается исследованием темной материи, распада вакуума и изучает эпоху реионизации период истории Вселенной между 550 млн лет и 800 млн лет после Большого Взрыва. Отмечу, что Мак рассматривает гибель Вселенной не так, как большинство коллег она утверждает, что раз Большой взрыв внезапно породил Вселенную, то и ее гибель может произойти так же спонтанно.

В своей новой книге «Конец всего» астрофизик пишет, что ученые понятия не имеют, почему ранняя Вселенная расширялась именно так, как расширялась напомню, физики называют раннее быстрое расширение Вселенной космической инфляцией это означает, что они также не могут сказать, что пространство не начнет яростно, быстро разрываться снова в любой момент.

Вам будет интересно: Пять веков Вселенной: в каком мы живем и что это значит?

Вселенная может погибнуть также внезапно, как родилась

Мак пишет о том, что процессы, происходящие во всей Вселенной в принципе могут произойти с каждым из нас: мы находимся во Вселенной и если она вдруг погибнет, погибнем и мы. То, что происходит там, в космосе, за пределами нашей планеты, очаровало исследовательницу с юных лет.

Одна из вещей, которые я пытаюсь сделать в книге, — это немного разделить этот экзистенциальный ужас. Я правда хочу помочь людям иметь более личную связь с тем, что происходит во Вселенной.

Хотим мы этого или нет, но мы с вами являемся частью Вселенной. Важно понимать, что абсолютно все вокруг нас и в самом космосе имеет начало и конец звезды, планеты, галактики и даже черные дыры рано или поздно заканчивают свое существование. Возможно, Вселенная и правда погибнет внезапно, как утверждает Кэти Мак, однако в недавно опубликованном исследовании отмечается, что в течение «следующих нескольких триллионов лет», когда Вселенной какой мы ее знаем уже не будет, звезды будут продолжать взрываться, но не как сверхновые, а просто будут медленно, очень медленно угасать.

Странная Вселенная

В исследовании, опубликованном в журнале Monthly Notices of the Royal Astronomical Society, ученые пишут о том, что в будущем Вселенная станет немного грустным, одиноким и холодным местом. Ведущий автор исследования физик-теоретик Мэтт Каплан называет это «Тепловой смертью» момент времени, когда Вселенная будет состоять в основном из черных дыр и сгоревших звезд.

В ходе исследования Каплан изучил потенциальные звездные взрывы и обнаружил, что в будущем белые карлики превратятся в сверхновые. Когда они станут плотнее, эти звезды станут «черными карликами», способными производить железо в своих ядрах.

Кадр из мультсериала Футурама: Фрай, Бендер и профессор наблюдает смерть Вселенной

В работе утверждается, что звезды, масса которых меньше примерно в 10 раз массы Солнца, не обладают гравитацией или плотностью, чтобы производить железо в своих ядрах, как это делают массивные звезды, поэтому они не смогут прямо сейчас стать сверхновой. Когда белые карлики остынут в течение следующих нескольких триллионов лет, они станут более тусклыми и в конечном итоге замерзнут и станут «черными карликовыми» звездами, которые больше не светят.

Чтобы всегда быть в курсе последних новостей из мира популярной науки и высоких технологий, подписывайтесь на наш канал в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте.

Поскольку железо не может быть сожжено, оно будет накапливаться, подобно яду и в итоге спровоцирует коллапс звезды, после чего та станет сверхновой. По оценкам Каплана, первый из этих теоретических взрывов произойдет примерно через 10-1100 лет. Эо так много, что все равно что произнести слово «триллион» почти сто раз. Иными словами, это умопомрачительно далеко в будущем.

Выходит, звезды будут взрываться, но мы вряд ли можем представить себе огромное количество тусклых, еле заметных взрывов огромного количества звезд. И все же, все звезды, которые превращаются в черные карлики, не взорвутся. Взорвутся только те, чья масса находится между 1,2 и 1,4 массами Солнца а это приблизительно 1% всех существующих сегодня звезд. Остальные примерно 99% звезд останутся черными карликами. Самые большие черные карлики станут сверхновыми первыми, за ними последуют меньшие, и тогда Вселенная, скорее всего, превратится в гигантскую пустоту, совершенно неузнаваемую. Согласитесь, это правда трудно себе представить.

Еще более удивительной выглядит теория Мультивселенной, согласно которой существует великое множество миров

Каплан пишет, что к этому моменту галактики рассеются, черные дыры испарятся, а расширение Вселенной разнесет все оставшиеся объекты так далеко друг от друга, что никто никогда не увидит, как взорвутся другие. Свет даже физически не сможет проникнуть так далеко.

Отмечу, что исследователи продолжают узнавать все больше как о ранней Вселенной, так и о ее возможном. В июле отдельная группа экспертов предположила, что Вселенная может быть на 1,2 миллиарда лет моложе, чем 13,8 миллиарда лет, как это принято считать.

Больше всего мне нравится вакуумный распад. И веселье, вероятно, не то слово, которое я должен использовать о разрушении Вселенной, но это забавная идея. Ты что-то меняешь в уравнениях, а потом обнаруживаешь, что где-то во Вселенной может материализоваться нечто вроде пузыря смерти, который просто расширится со скоростью света и уничтожит все.

Кэти Мак, астрофизик из университета Северной Каролины.

А какая гипотеза гибели Вселенной нравится вам? Ответ будем ждать здесь!

Подробнее..

Восход и закат теории струн

31.08.2020 18:08:41 | Автор: admin

Некоторые исследователи считают теорию струн практически лженаукой. Но так ли это?

Многие физики считают теорию струн главным кандидатом на объединение теорий квантовой физики и гравитации в единую теорию всего. Но существует и противоположное мнение, согласно которому эта концепция является практически лженаукой, так как проверить ее с помощью экспериментов невозможно. И все же некоторые исследователи считают, что у нас, возможно, появился способ это сделать согласно новой гипотезе, которая противопоставляет теорию струн теории космической инфляции. Все это сводится к следующему вопросу: не скрыты ли квантовые секреты Вселенной от наших глаз или же есть некие детали, с помощью которых теорию струн можно объяснить?

Инфляционная модель Вселенной гипотеза о физическом состоянии и законе расширения Вселенной, которое началось сразу после Большого взрыва. Инфляция предполагает период ускоренного расширения Вселенной (в сравнении со стандартной моделью горячей Вселенной).

Космическая инфляция

Один из способов исключить эту идею заключается в том, чтобы доказать, что она не предсказывает особенность нашей Вселенной. А теория струн, как оказалось, постоянно сталкивается с проблемой описания наиболее популярного объяснения того, что происходило в первые мгновения существования Вселенной сразу после Большого взрыва: инфляции.

«Инфляция самое убедительное объяснение того, почему наша Вселенная выглядит так, как она выглядит, и откуда взялась ее структура», — считает Марилена Лаверде, физик из университета Стоуни-Брук. Инфляция объясняет, как, в некотором смысле, мы получили все во Вселенной из ничего. Теория утверждает, что ранняя Вселенная прошла через фазу экстремального расширения. Этот процесс увеличивал случайные всплески в квантовом вакууме и превращал их в галактики и другие объекты вокруг нас.

Однако теоретикам было трудно показать, как и работает ли вообще инфляция работает в теории струн. Самый многообещающий путь к этому так называемая конструкция ККЛТ (KKLT construction) убеждает далеко не всех. Некоторые исследователи отмечают, что в глубине сознания многих людей, занимающихся теорией струн, давно поселилось сомнение: действительно ли она работает?

Еще больше увлекательных статей о том, какое будущее ожидает человеческую цивилизацию, читайте на нашем канале в Google News

Насколько правдоподобна теория струн?

В 2018 году группа струнных теоретиков утверждала, что, возможно, инфляция просто не может произойти в теории. Эта так называемая гипотеза де Ситтера утверждала, что любая версия концепции, которая могла бы описать пространство де Ситтера термин для того типа Вселенной, в которой мы предполагаем существование инфляции, имела бы какой-то технический недостаток, который поместил бы ее в «болото» отвергнутых теорий.

Отмечу, что любое ограничение инфляции повысило бы вероятность проверки теории струн на реальных данных. По словам Кумруна Вафы, физика из Гарвардского университета и одного из авторов гипотезы, исследователи могут начать строить доказательства этой идеи если смогут связать ее с хорошо известными физическими законами. Один из подходов к укреплению доверия может попытаться объяснить, какое физическое правило ограничивает инфляцию или, если поставить вопрос более практично: как физики-теоретики смогут убедить космологов пересмотреть наиболее предпочтительную теорию?

Наша Вселенная и правда очень странная

Ответ, как это часто бывает, пришел откуда не ждали оказывается, инфляция уже имеет нерешенную проблему: далеко не все физики согласны с тем, что происходит с мельчайшими квантовыми частицами (речь идет о расширение вакуума и увеличении его статики).

Теория всего

Физикам не хватает рабочей теории, которая описывала бы мир ниже уровня так называемой планковской длины чрезвычайно малого расстояния, на котором они ожидают появления квантовой гравитации. Сторонники инфляции, как правило, полагают что однажды смогут включить в нее все «транс-планковские» детали и что они не будут иметь большого значения при построении любых прогнозов. Но как именно это произойдет, остается неизвестным.

Как пишет Scientific American, согласно новой гипотезе чрезвычайно крошечная квантовая нечеткость всегда должна оставаться чрезвычайно крошечной и квантовой, несмотря на увеличивающий эффект расширения. Если эта идея верна, она подразумевает ограничения на величину инфляции, которая может произойти, потому что слишком большая ее часть будет означать слишком большое увеличение транс-планковских деталей.

А как вы думаете, верна ли теория струн? Ответ будем ждать в комментариях к этой статье а также в нашем Telegram-чате

Таким образом, в новом подходе к теории струн исследователи действительно могут искать ответы вглядываясь в звездное небо. Существует несколько различных моделей реального процесса инфляции и астрофизики пока не располагают данными, подтверждающими хотя бы одну из них.

Теория всего позволила бы нам ответить на фундаментальные вопросы о Вселенной

Еще одним важным моментом, конфликтующим с теорией струн являются гравитационные волны. Их существование доказали в 2017 году, так что ученым доподлинно известно, что гравитационные волны оставляют после себя слабый, но отчетливый отпечаток в космическом фоновом микроволновом излучении (реликтовом излучении). Однако согласно новой гипотезе, существование гравитационныхволн допускается, правда, их должно быть совсем немного. Настолько, что любой признак гравитационных волн будет означать, что теория струн не применима к нашей Вселенной. Так что физики, вероятно, должны будут придумать для них другое объяснение.

Подробнее..

Как старые телевизоры доказывают теорию Большого взрыва?

10.09.2020 00:18:08 | Автор: admin

Старые телевизоры, как это не удивительно, доказывают теорию Большого взрыва

В век высоких технологий мы не особо задумываемся о старой бытовой технике. И уж тем более о старых, огромных телевизорах. Их место теперь занимают плоские черные прямоугольники с жидкокристаллическими экранами. Но что, если мы недооцениваем старое поколение телевизоров? Ведь они оснащены антеннами для приема широковещательных сигналов, что, безусловно, чрезвычайно архаично по современным стандартам. Тем не менее, эти антенны в некотором смысле являются весьма специфическим типом радиотелескопа и могут быть использованы учеными, чтобы… обнаружить Большой Взрыв. На протяжении бесчисленных поколений философы, теологи и поэты размышляли о нашем космическом происхождении, выдвигая самые разнообразные гипотезы. Все изменилось в XX веке, когда теоретические, экспериментальные и наблюдательные открытия в физике и астрономии, наконец, вывели эти вопросы в область проверяемой науки.

Как родилась Вселенная?

Сегодня ученым известно, что сочетание космического расширения, первобытного изобилия легких элементов, крупномасштабной структуры Вселенной и космического микроволнового фона объединилось, чтобы положить начало Большому Взрыву. Хотя космический микроволновый фон (реликтовое излучение) был обнаружен только в середине 1960-х годов, внимательный наблюдатель мог бы обнаружить его в самых неожиданных местах: например, в старом телевизоре.

Реликтовое излучение - это космическое микроволновое фоновое излучение, возникшее в ранней Вселенной вскоре после Большого взрыва

Тот факт, что галактики на разных расстояниях проявляют разные свойства, был первой подсказкой для исследователей, которая и привела их к идее Большого Взрыва. Однако наиболее важные доказательства, подтверждающие это эпохальное событие, появились только в середине 1960-х годов.

Чтобы понять, как все устроено, необходимо понять, что такое реликтовое излучение (космическое фоновое микроволновое излучение). Сегодня, первым что бросается в глаза во воемя изучения Вселенной, являются галактики, а точнее их несметное количество: ученым видно приблизительно 2 триллиона. И это согласно лучшим современным оценкам. Галактики в непосредственной близости к Млечному Пути очень похожи между собой: их заполняют звезды, похожие на звезды в нашей собственной галактике. Но что на счет законов физики?

Старый телевизор вполне может пригодиться

Логично предположить, что законы физики в других галактиках такие же как в нашей. Их звезды также должны состоять из протонов, нейтронов и электронов, а их атомы подчинялись бы тем же квантовым законам, что и атомы в Млечном Пути. Однако есть небольшая разница в освещении, которое мы получаем. Вместо тех же атомных спектральных линий, которые мы находим здесь, дома, свет от звезд в других галактиках показывает смещенные атомные переходы.

Каждый элемент во Вселенной имеет свой собственный уникальный набор атомных переходов, которые соответствует определенному набору спектральных линий. Мы можем наблюдать эти линии в галактиках, отличных от нашей собственной, но хотя картина та же самая, линии, которые мы наблюдаем, систематически смещены относительно линий, которые мы создаем с атомами на Земле. Эти сдвиги уникальны для каждой конкретной галактики, но все они следуют определенной схеме: чем дальше находится галактика (в среднем), тем больше смещение ее спектральных линий в сторону красной части спектра. Чем дальше мы смотрим, тем больше сдвигов мы видим.

Еще больше по теме: Что ученым известно о возрасте и расширении Вселенной?

Спектральные линии

Спектральные линии возникают, когда световые волны определенных цветов поглощаются. Как пишет Forbes, свет может быть смещен, потому что эти галактики быстро отдалялись от Большого взрыва. Первоначальные наблюдения Хаббла за расширением Вселенной в 1929 году последовали впоследствии… [ + ] более подробные, но и неопределенные наблюдения. График Хаббла ясно показывает соотношение красного смещения и расстояния с превосходящими данными по сравнению с его предшественниками и конкурентами; современные эквиваленты идут гораздо дальше. Заметим, что особые скорости всегда присутствуют, даже на больших расстояниях, но что общая тенденция, связывающая расстояние с красным смещением, является доминирующим эффектом.

Теория Большого взрыва основная космологическая модель Вселенной

Этот последний пункт оказался в полном согласии с нашими наблюдениями и помог нам понять, что с течением времени расширяется сама ткань пространства. Причина, по которой свет становится краснее, чем дальше мы смотрим, заключается в том, что Вселенная расширяется с течением времени, и свет внутри этой вселенной получает свою длину волны, растянутую расширением. Чем дольше свет путешествовал, тем больше красное смещение из-за расширения. Когда мы движемся вперед во времени, излучаемый свет смещается к большим длинам волн, которые имеют более низкие температуры и меньшие энергии. Но это означает, что если мы посмотрим на Вселенную противоположным образом представив ее такой, какой она была в далеком прошлом, — мы увидим свет с меньшими длинами волн, с более высокими температурами и большими энергиями. Чем дальше вы экстраполируете, тем горячее и энергичнее должно быть это излучение.

Еще больше увлекательных статей о нашей удивительной Веленной читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте

По мере того как ткань Вселенной расширяется, длины волн любого присутствующего излучения будут растягиваться. Это верно как для гравитационных волн, так и для электромагнитных волн; любая форма излучения имеет свою длину волны растянутой (и теряет энергию) по мере расширения Вселенной. По мере того как мы углубляемся в прошлое, излучение должно появляться с более короткими длинами волн, большими энергиями и более высокими температурами.

Хотя это был захватывающий теоретический скачок, ученые (начиная с Джорджа Гамова в 1940-х годах) начали экстраполировать это свойство все дальше и дальше, пока не был достигнут критический порог в несколько тысяч Кельвинов. В этот момент, как следовало из рассуждений, присутствующее излучение будет достаточно энергичным, чтобы некоторые из отдельных фотонов могли ионизировать нейтральные атомы водорода: строительный блок звезд и первичное содержимое нашей Вселенной.

Смотреть на звезды сегодня можно сидя на диване

Когда вы переходите из вселенной, которая была выше этого температурного порога, в ту, которая была ниже его, Вселенная переходит из состояния, которое было заполнено ионизированными ядрами и электронами, в состояние, заполненное нейтральными атомами. Когда материя ионизирована, она рассеивается от излучения; когда материя нейтральна, излучение проходит прямо через эти атомы. Этот переход знаменует собой критический момент в прошлом нашей Вселенной.

Это интересно: Расплетая радугу как тайны света привели человечество к открытию темной материи?

После образования нейтральных атомов, вследствие охлаждения Вселенной ниже определенного критического порога, фотоны света движутся по прямой линии, на которую влияет только длина волны расширения пространства. Впечатляющая реализация этого сценария заключается в том, что сегодня это излучение остыло бы от нескольких тысяч Кельвинов до всего лишь нескольких градусов выше абсолютного нуля, поскольку Вселенная должна была расшириться где-то от сотни до нескольких тысяч раз с той эпохи. Она и сегодня должна оставаться фоном, приходящим к нам со всех сторон в пространстве. Он должен иметь определенный набор спектральных свойств: распределение абсолютно черного тела. И он должен быть обнаружен где-то в диапазоне от СВЧ до радиочастот.

Помните, что свет, каким мы его знаем, — это гораздо больше, чем просто видимая часть, к которой чувствительны наши глаза. Свет приходит в различных длинах волн, частотах и энергиях. То, что было ультрафиолетовым, видимым и инфракрасным светом миллиарды лет назад, становится микроволновым и радио излучением.

Подробнее..

Шкала Ландау умнейшие физики в истории человечества

03.10.2020 14:05:46 | Автор: admin

Сольвеевские конгрессы серия международных конференций по обсуждению фундаментальных проблем физики и химии, проводимая в Брюсселе международными Сольвеевскими институтами физики и химии с 1911 года. На фото участники пятого Солвеевского конгресса слева направо нижний ряд: Ирвинг Ленгмюр (Нобелевская премия по химии, 1932 далее просто НПХ), Макс Планк (НПФ-1918), Мария Кюри (НПФ1903, НПХ-1911), Хенрик Лоренц (НПФ-1902), Альберт Эйнштейн (НПФ-1921), Поль Ланжевен, Шарль Гюи, Чарльз Вильсон (НПФ-1927), Оуэн Ричардсон (НПФ-1928). Средний ряд: Петер Дебай (НПХ-1936), Мартин Кнудсен, Уильям Брэгг (НПФ-1925), Хендрик Крамерс, Поль Дирак (НПФ-1933), Артур Комптон (НПФ-1927), Луи де Бройль (НПФ-1929), Макс Борн (НПФ-1954), Нильс Бор (НПФ-1922). Верхний ряд: Огюст Пикар (без нобелевки, зато с изобретением батискафа Трест, спустившегося на дно Мариинской впадины), Эмиль Анрио, Пауль Эренферст, Эдуард Герцен, Теофил де Дондер, Эрвин Шрёдингер (НПФ-1933), Жюль Эмиль Вершафельт, Вольфганг Паули (НПФ-1945), Вернер Гейзенберг (НПФ-1932), Ральф Фаулер, Леон Бриллюэн.

Лауреат Нобелевской премии советский физик Лев Ландау использовал логарифмическую шкалу для ранжирования лучших физиков XX века по их вкладу в науку. Лев Ландау (1908-1968) был одним из лучших физиков Советского Союза, внесший свой вклад в ядерную теорию, квантовую теорию поля и, среди прочих, астрофизику. В 1962 году он получил Нобелевскую премию по физике за разработку математической теории сверхтекучести. Ландау также написал великолепный учебник по физике, обучая целые поколения ученых. Блестящий ум, Ландау любил классифицировать все в своей жизни он оценивал людей по их интеллекту, красоте (физик известен своей любовью к блондинкам), вкладу в науку, тому, как они одевались и даже как разговаривали. Из этой статьи вы узнаете, кого выдающийся советский ученый считал лучшими физиками в истории человечества.

Сверхтекучесть способность вещества в особом состоянии (квантовой жидкости), возникающем при температурах, близких к абсолютному нулю, протекать через узкие щели и капилляры без трения.

Шкала Ландау

Одна из самых известных классификаций Ландау это его рейтинг величайших физиков ХХ века. Эта шкала логарифмическая, то есть вклад ученых, отнесенных к первому классу, в десять раз больше, чем вклад физиков, отнесенных ко второму классу, и так далее. Другими словами, чем больше число, тем меньший вклад, по мнению Ландау, внес тот или иной физик в науку.

Альберт Эйнштейн Ранг 0,5

Эйнштейн, создатель Общей теории относительности, по мнению советского ученого, принадлежит к своему собственному классу. Ландау считал себя величайшим умом среди весьма впечатляющей группы ученых, которые переосмыслили современную физику. Ландау, однако, считал, что если бы этот список был расширен до ученых предыдущих столетий, Исаак Ньютон отец классической физики, также присоединился бы к Эйнштейну, занимая почетную первую строчку в этой логарифмической шкале.

физик-теоретик, один из основателей современной теоретической физики

Вам будет интересно: Почему квантовая физика сродни магии?

Ранг 1

Группа в этом классе самых умных физиков включала лучшие умы, которые разработали теорию квантовой механики.

Вернер Гейзенберг (1901 — 1976) — немецкий физик-теоретик, получивший известность в поп-культуре благодаря альтер-эго Уолтера Уайта в фильме «Во все тяжкие». Он известен принципом неопределенности Гейзенберга, и его Нобелевская премия 1932 года категорически утверждает, что это было не что иное, как «создание квантовой механики».

Немецкий физик-теоретик, один из создателей квантовой механики, лауреат Нобелевской премии по физике (1932), член ряда академий и научных обществ мира.

Эрвин Шредингер (1887 — 1961) — австрийско-ирландский физик, подаривший нам печально известный мысленный эксперимент «кошка Шредингера» и других магов разума из квантовой механики. Уравнение Шредингера нобелевского лауреата вычисляет волновую функцию системы и то, как она изменяется с течением времени.

Эрвин Шрёдингер один из основоположников квантовой механики. Его уравнение волновой функции стало образцом проявления нестандартного мышления при изучении проблем микромира.

Еще больше увлекательных статей о выдающихся ученых и последних научных открытиях читайте на нашем канале в Google News

Поль Дирак (1902-1984) еще один гигант квантовой механики, этот английский физик-теоретик разделил Нобелевскую премию 1933 года с Эрвином Шредингером «за открытие новых продуктивных форм атомной теории.»

Нильс Бор (1885 — 1962) датский физик, который сделал фундаментальные дополнения к тому, что мы знаем об атомной структуре и квантовой теории, что привело к его Нобелевской премии по физике 1922 года.

Шатьендранат Бозе (1894 — 1974) индийский математик и физик, известен своими работами по квантовой механике. Один из создателей квантовой статистики, теории конденсата Бозе Эйнштейна. Бозонные частицы названы в его честь.

Шатьендранат один из членов-основателей (1935)[6] Индийской национальной академии наук

Юджин Вигнер (1902 — 1995) — венгерско-американский физик-теоретик, получивший в 1963 году Нобелевскую премию по физике за работы по теории атомного ядра и элементарных частиц. Как известно, он принял участие во встрече с Лео Силардом и Альбертом Эйнштейном, которая привела к написанию ими письма президенту Франклину Д. Рузвельту, результатом которого стало создание Манхэттенского проекта.

Луи де Бройль (1892-1987) — французский теоретик, внесший ключевой вклад в квантовую теорию. Он предложил волновую природу электронов, предположив, что вся материя обладает волновыми свойствами пример концепции корпускулярно-волнового дуализма, Центральной в теории квантовой механики.

Энрико Ферми (1901 — 1954) — американский физик, которого называют «архитектором ядерного века», а также «архитектором атомной бомбы». Он также создал первый в мире ядерный реактор и получил Нобелевскую премию по физике 1938 года за работу по индуцированной радиоактивности и за открытие трансурановых элементов.

Итальнский физик Энрико Ферми один из отцов-основателей атомной бомбы

Если вам интересны новости науки и технологий, подпишитесь на наш канал в Яндекс.Дзен. Там вы найдете материалы, которые не были опубликованы на сайте!

Вольфганг Паули (1900-1958) — австрийский теоретик-теоретик, известный как один из пионеров квантовой физики. В 1945 году он получил Нобелевскую премию по физике за открытие нового закона природы принципа исключения (он же принцип Паули) и развитие теории спина.

Макс Планк (1858-1947) — немецкий физик-теоретик, получивший в 1918 году Нобелевскую премию по физике за кванты энергии. Он был создателем квантовой теории, физики атомных и субатомных процессов.

Ранг 2.5

Ландау оставил после себя множество достижений это и многотомные научные труды по физике, и сотни метких афоризмов, и знаменитая теория счастья.

Ранг 2.5 так Ландау первоначально оценивал себя. Эта скромность вызвана тем, что Ландау полагал, что не произвел никаких фундаментальных достижений. Позже, по мере роста собственных достижений советский ученый повысил свой ранг до 1,5.

Подробнее..

Шкала Ландау умнейшие физики ХХ века

03.10.2020 20:01:59 | Автор: admin

Сольвеевские конгрессы серия международных конференций по обсуждению фундаментальных проблем физики и химии, проводимая в Брюсселе международными Сольвеевскими институтами физики и химии с 1911 года. На фото участники пятого Солвеевского конгресса слева направо нижний ряд: Ирвинг Ленгмюр (Нобелевская премия по химии, 1932 далее просто НПХ), Макс Планк (НПФ-1918), Мария Кюри (НПФ1903, НПХ-1911), Хенрик Лоренц (НПФ-1902), Альберт Эйнштейн (НПФ-1921), Поль Ланжевен, Шарль Гюи, Чарльз Вильсон (НПФ-1927), Оуэн Ричардсон (НПФ-1928). Средний ряд: Петер Дебай (НПХ-1936), Мартин Кнудсен, Уильям Брэгг (НПФ-1925), Хендрик Крамерс, Поль Дирак (НПФ-1933), Артур Комптон (НПФ-1927), Луи де Бройль (НПФ-1929), Макс Борн (НПФ-1954), Нильс Бор (НПФ-1922). Верхний ряд: Огюст Пикар (без нобелевки, зато с изобретением батискафа Трест, спустившегося на дно Мариинской впадины), Эмиль Анрио, Пауль Эренферст, Эдуард Герцен, Теофил де Дондер, Эрвин Шрёдингер (НПФ-1933), Жюль Эмиль Вершафельт, Вольфганг Паули (НПФ-1945), Вернер Гейзенберг (НПФ-1932), Ральф Фаулер, Леон Бриллюэн.

Лауреат Нобелевской премии советский физик Лев Ландау использовал логарифмическую шкалу для ранжирования лучших физиков XX века по их вкладу в науку. Лев Ландау (1908-1968) был одним из лучших физиков Советского Союза, внесший свой вклад в ядерную теорию, квантовую теорию поля и, среди прочих, астрофизику. В 1962 году он получил Нобелевскую премию по физике за разработку математической теории сверхтекучести. Ландау также написал великолепный учебник по физике, обучая целые поколения ученых. Блестящий ум, Ландау любил классифицировать все в своей жизни он оценивал людей по их интеллекту, красоте (физик известен своей любовью к блондинкам), вкладу в науку, тому, как они одевались и даже как разговаривали. Из этой статьи вы узнаете, кого выдающийся советский ученый считал лучшими физиками в истории человечества.

Сверхтекучесть способность вещества в особом состоянии (квантовой жидкости), возникающем при температурах, близких к абсолютному нулю, протекать через узкие щели и капилляры без трения.

Шкала Ландау

Одна из самых известных классификаций Ландау это его рейтинг величайших физиков ХХ века. Эта шкала логарифмическая, то есть вклад ученых, отнесенных к первому классу, в десять раз больше, чем вклад физиков, отнесенных ко второму классу, и так далее. Другими словами, чем больше число, тем меньший вклад, по мнению Ландау, внес тот или иной физик в науку.

Альберт Эйнштейн Ранг 0,5

Эйнштейн, создатель Общей теории относительности, по мнению советского ученого, принадлежит к своему собственному классу. Ландау считал себя величайшим умом среди весьма впечатляющей группы ученых, которые переосмыслили современную физику. Ландау, однако, считал, что если бы этот список был расширен до ученых предыдущих столетий, Исаак Ньютон отец классической физики, также присоединился бы к Эйнштейну, занимая почетную первую строчку в этой логарифмической шкале.

физик-теоретик, один из основателей современной теоретической физики

Вам будет интересно: Почему квантовая физика сродни магии?

Ранг 1

Группа в этом классе самых умных физиков включала лучшие умы, которые разработали теорию квантовой механики.

Вернер Гейзенберг (1901 — 1976) — немецкий физик-теоретик, получивший известность в поп-культуре благодаря альтер-эго Уолтера Уайта в фильме «Во все тяжкие». Он известен принципом неопределенности Гейзенберга, и его Нобелевская премия 1932 года категорически утверждает, что это было не что иное, как «создание квантовой механики».

Немецкий физик-теоретик, один из создателей квантовой механики, лауреат Нобелевской премии по физике (1932), член ряда академий и научных обществ мира.

Эрвин Шредингер (1887 — 1961) — австрийско-ирландский физик, подаривший нам печально известный мысленный эксперимент «кошка Шредингера» и других магов разума из квантовой механики. Уравнение Шредингера нобелевского лауреата вычисляет волновую функцию системы и то, как она изменяется с течением времени.

Эрвин Шрёдингер один из основоположников квантовой механики. Его уравнение волновой функции стало образцом проявления нестандартного мышления при изучении проблем микромира.

Еще больше увлекательных статей о выдающихся ученых и последних научных открытиях читайте на нашем канале в Google News

Поль Дирак (1902-1984) еще один гигант квантовой механики, этот английский физик-теоретик разделил Нобелевскую премию 1933 года с Эрвином Шредингером «за открытие новых продуктивных форм атомной теории.»

Нильс Бор (1885 — 1962) датский физик, который сделал фундаментальные дополнения к тому, что мы знаем об атомной структуре и квантовой теории, что привело к его Нобелевской премии по физике 1922 года.

Шатьендранат Бозе (1894 — 1974) индийский математик и физик, известен своими работами по квантовой механике. Один из создателей квантовой статистики, теории конденсата Бозе Эйнштейна. Бозонные частицы названы в его честь.

Шатьендранат один из членов-основателей (1935)[6] Индийской национальной академии наук

Юджин Вигнер (1902 — 1995) — венгерско-американский физик-теоретик, получивший в 1963 году Нобелевскую премию по физике за работы по теории атомного ядра и элементарных частиц. Как известно, он принял участие во встрече с Лео Силардом и Альбертом Эйнштейном, которая привела к написанию ими письма президенту Франклину Д. Рузвельту, результатом которого стало создание Манхэттенского проекта.

Луи де Бройль (1892-1987) — французский теоретик, внесший ключевой вклад в квантовую теорию. Он предложил волновую природу электронов, предположив, что вся материя обладает волновыми свойствами пример концепции корпускулярно-волнового дуализма, Центральной в теории квантовой механики.

Энрико Ферми (1901 — 1954) — американский физик, которого называют «архитектором ядерного века», а также «архитектором атомной бомбы». Он также создал первый в мире ядерный реактор и получил Нобелевскую премию по физике 1938 года за работу по индуцированной радиоактивности и за открытие трансурановых элементов.

Итальнский физик Энрико Ферми один из отцов-основателей атомной бомбы

Если вам интересны новости науки и технологий, подпишитесь на наш канал в Яндекс.Дзен. Там вы найдете материалы, которые не были опубликованы на сайте!

Вольфганг Паули (1900-1958) — австрийский теоретик-теоретик, известный как один из пионеров квантовой физики. В 1945 году он получил Нобелевскую премию по физике за открытие нового закона природы принципа исключения (он же принцип Паули) и развитие теории спина.

Макс Планк (1858-1947) — немецкий физик-теоретик, получивший в 1918 году Нобелевскую премию по физике за кванты энергии. Он был создателем квантовой теории, физики атомных и субатомных процессов.

Ранг 2.5

Ландау оставил после себя множество достижений это и многотомные научные труды по физике, и сотни метких афоризмов, и знаменитая теория счастья.

Ранг 2.5 так Ландау первоначально оценивал себя. Эта скромность вызвана тем, что Ландау полагал, что не произвел никаких фундаментальных достижений. Позже, по мере роста собственных достижений советский ученый повысил свой ранг до 1,5.

Подробнее..

Время эластично почему на вершине горы время идет быстрее, чем на пляже?

04.10.2020 00:13:22 | Автор: admin

Время неоднородно: оно течет с разной скоростью в зависимости от того, где вы находитесь и с какой скоростью двигаетесь.

Гравитация, как мы знаем сегодня, обладает способностью искривлять пространство и время. Как утверждал Эйнштейн в Общей теории относительности (ОТО), время, по мере приближения к Земле, идет медленнее. Это происходит из-за того, что гравитация большой массы, например, такой как наша планета, искривляет пространство и время вокруг нее. Этот эффект называется «эффектом замедления времени» и он проявляется даже на малых уровнях. Однако за пределами физических законов мы воспринимаем время иначе, точнее, искаженно. Так, если поместить одни часы на вершине горы, а другие оставить на пляже, то в конце-концов вы увидите, что все часы показывают разное время. Ученые впервые наблюдали эффект замедления времени в космическом масштабе, когда звезда проходила рядом с черной дырой. Затем тот же эффект был зафиксирован в меньших масштабах исследователи использовали пару чрезвычайно точных атомных часовых механизмов, причем одни часы были расположены на 33 сантиметра выше, чем другие. Результаты показали, что время снова замедлилось на часах, расположенных ближе к Земле.

Атомные часы прибор для измерения времени. В качестве периодического процесса используются собственные колебания, связанные с процессами, происходящими на уровне атомов или молекул.

Эффект замедления времени

Замедление времени восходит к Специальной теории относительности (СТО) Эйнштейна, согласно которой движение в пространстве на самом деле создает изменения в течении времени. Чем быстрее вы движетесь через три измерения, которые определяют физическое пространство, тем медленнее вы движетесь через четвертое измерение время, по крайней мере, относительно другого объекта. Так, часы в движении будут тикать медленнее, чем часы на земле. Если двигаться со скоростью, близкой к скорости света, эффект будет гораздо более выраженным.

Важно понимать, что замедление времени это не мысленный эксперимент или гипотетическая концепция, а реальность. Это доказали эксперименты Хафеле-Китинга, проведенные в 1971 году, когда на самолетах, летящих в противоположных направлениях, были установлены два атомных часовых механизма. Относительное движение на самом деле оказало измеримое воздействие и создало разницу во времени между двумя часами. Это также было подтверждено в других физических экспериментах.

Почему мы помним прошлое, а не будущее?

Но есть еще одна примечательная деталь: замедление времени в результате гравитационных эффектов. Возможно, вы видели фильм Кристофера Нолана «Интерстеллар», где близость черной дыры заставляет время на другой планете чрезвычайно замедляться (один час на этой планете равен семи земным годам). Эта форма замедления времени также реальна. Все дело в Общей теории относительности Эйнштейна, о чем написано в начале статьи гравитация может искривлять пространство-время, а следовательно, и само время. А значит, абсолютного времени не существует.

Чем ближе часы к источнику гравитации, тем медленнее проходит время; чем дальше часы от источника гравитации, тем быстрее будет идти время.

Выходит, для всех часов в мире и для каждого из нас время течет немного по-разному. Но даже если время течет с постоянно меняющимися скоростями по всей Вселенной, время все равно течет в каком-то объективном смысле, верно? Или нет?

Физика без времени

В своей книге «Порядок времени» итальянский физик-теоретик Карло Ровелли предположил, что наше восприятие времени наше ощущение, что время вечно течет вперед может быть в высшей степени субъективной проекцией. В конце-концов, когда вы смотрите на реальность в наименьшем масштабе (используя уравнения квантовой гравитации, например), время исчезает.

Итак, почему мы воспринимаем время как движение вперед? Ровелли отмечает, что, хотя время исчезает в чрезвычайно малых масштабах, мы наблюдаем энтропию: порядок превращается в беспорядок; яйцо разбивается и становится яичницей. Ровелли пишет, что ключевые аспекты времени описаны во втором законе термодинамики, который гласит, что тепло всегда переходит от горячего к холодному, как улица с односторонним движением. Например, кубик льда тает в чашке горячего чая, а не наоборот. Ровелли предполагает, что подобный феномен может объяснить, почему мы способны воспринимать только прошлое, а не будущее.

Читайте также: Как сильно время повлияло на выражения лиц людей?

«Каждый раз, когда будущее определенно отличается от прошлого, возникает что-то вроде тепла», — писал Ровелли в статье для Financial Times.

Термодинамика прослеживает направление времени к чему-то, называемому «низкой энтропией прошлого», все еще загадочному явлению, о котором бушуют дискуссии.» «Рост энтропии ориентирует время и допускает существование следов прошлого, а они допускают возможность воспоминаний, которые скрепляют наше чувство идентичности. Я подозреваю, что то, что мы называем «течением» времени, следует понимать, изучая структуру нашего мозга, а не изучая физику: эволюция превратила наш мозг в машину, которая питается памятью, чтобы предвидеть будущее. Вот к чему мы прислушиваемся, когда прислушиваемся к течению времени. Таким образом, понимание «течения» времени может иметь большее отношение к нейробиологии, чем к фундаментальной физике. Поиск объяснения ощущения потока в физике может оказаться ошибкой.

Ученым еще многое предстоит узнать о том, как мы воспринимаем время и почему оно действует по-разному в зависимости от масштаба. Но несомненно то, что за пределами физики наше индивидуальное восприятие времени также удивительно эластично.

Еще больше увлекательных статей о последних научных открытиях в области физики, читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте.

Странная субъективность времени

На вершине горы время движется иначе, чем на пляже. Но чтобы испытать искажение восприятия времени, не нужно отправляться в горы или на море. Так, в моменты сильного страха мозг выделяет большое количество адреналина, который ускоряет внутренние часы, заставляя воспринимать внешний мир как движущийся очень медленно.

Ровелли отмечает, для работы в области квантовой гравитации придется столкнуться с вопросами о природе времени.

Еще одно распространенное искажение возникает, когда мы фокусируем свое внимание определенным образом. Как отмечает Аарон Сакетт, адъюнкт-профессор маркетинга в Университете Сент-Томаса в интервью Gizmodo, если вы думаете о том, как в настоящее время проходит время, самым главным фактором, влияющим на ваше восприятие времени, является внимание.

Чем больше внимания вы уделяете течению времени, тем медленнее оно течет.

Когда вы отвлекаетесь от течения времени возможно, от чегото интересного, происходящего поблизости, вы с большей вероятностью теряете счет времени. Создается стойкое ощущение, что оно ускользает быстрее, чем раньше. Известная поговорка гласит: «Время летит, когда тебе весело», но реальность больше похожа на «время летит, когда ты думаешь о других вещах».

В свою очередь Ровелли считает, что то, что мы называем временем это богатая, стратифицированная концепция, имеющая множество слоев. Некоторые слои времени применимы только в ограниченных масштабах в ограниченных областях, но это не делает их иллюзиями.Иллюзией является представление о том, что время течет с абсолютной скоростью. Река времени может течь вечно вперед, но она движется с разной скоростью, между людьми и даже внутри вашего собственного разума.

Подробнее..

При какой максимальной гравитации может выжить человек?

09.10.2020 20:08:12 | Автор: admin

Возможно, человек и правда когда-нибудь отправиться на поиски планет, пригодных для жизни

В романе Курта Воннегута «Балаган или конец одиночества» сила гравитации постоянно менялась, то придавливая все живое к земле, то даруя удивительную легкость. Если представить, что нечто подобное произойдет в реальности, то первым вопросом будет «какую максимальную гравитацию выдерживает человеческое тело?» В 2015 году силач и актер «Игры престолов» побил тысячелетний рекорд, сделав пять шагов с 650-килограммовым бревном на спине. Для большинства из нас это был просто необыкновенный пример героической силы. Для ученых этот подвиг означал сокрушительный предел гравитационного притяжения, которое любой смертный мог когда-либо надеяться выдержать. В 2018 году ученые из Загребского университета в Хорватии наконец ответили на вопрос о том, какую максимальную силу гравитации способен выдержать человек. По словам авторов исследования, эти знания пригодятся будущим астронавтам при колонизации других планет.

Гравитация и тело человека

Человек освоил прямохождение около 3,6миллионов летназад. Наша походка формировалась поддействием силы тяжести, эквивалентной примерно на 9,8 ньютонов накилограмм массы тела. Рассчитав крепость костей имускулатуры, исследователи выяснили, что люди смогут передвигаться, пусть исогромным трудом, напланетах, чьягравитация в4раза превышает гравитацию на Земле. В случае, если гравитация на экзопланете будет превышать земную в пять раз, человек не сможет даже пошевелиться.

Однако главной опасностью при такой силе тяжести окажется нагрузка на сердце перекачивание крови в верхние отделы организма будет сильно затруднено, так как вся кровь прильет к нижним конечностям. В случае же, если гравитация превысит земную в десять раз, скелет сломается под тяжестью собственного тела.

К столь критической оценке исследователи пришли приняв во внимание тот факт, что наши кости впечатляющие сооружения, если говорить о технике. На самом деле, одна только большеберцовая кость способна выдержать примерно 90-кратную земную гравитацию, прежде чем расколоться. Работая с цифрами о силе человеческой мускулатуры, исследователи определили, что находясь в хорошей физической форме и регулярно тренируясь мы довольно просто могли бы противостоять силе тяжести не более 5 g.

Если вам интересно, какое будущее ожидает нашу цивилизацию, подписывайтесь на наш канал в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте.

Хафтор Бьернссон также является гордым обладателем титула Самый сильный человек мира-2018

Но можно ли ходить при такой гравитации? С точки зрения физики, ходьба это, по существу, цикл контролируемого падения, где качание каждой ноги предотвращает встречу лица с землей. Этот паттерн «падение-сброс-падение-сброс» заставляет наш центр масс качаться вверх и вниз, где сосредоточена большая часть работы. Вот почему физики разработали собственную модель так называемой «перевернутой маятниковой походки», учитывающую колебания центра масс человека и время его раскачивания ногами. Рекорд Бьернссона (игра престолов), составляющий пять шагов, устанавливает довольно хороший ориентир для верхних пределов того, чего может достичь человеческая походка.

Объединив массу бревна, вес и размер ноги Бьернссона, команда определила, что человек с таким же телосложением может медленно передвигаться по планете с гравитацией или g примерно в 4,6 раза больше земной. Наше сердце едва справляется с гравитацией около 5 g, выше которой мы начинаем терять сознание. Таким образом, похоже, эта цифра устанавливает абсолютную границу для любого вида человеческого исследования.

Необходимо отметить, что, как пишут сами авторы исследования, работа имеет ряд ограничений. Так, авторы не учитывали роль скафандров и любых дополнительных технологий, которые могут увеличить предел допустимой силы тяжести. Тем не менее, для долгосрочного пребывания на незнакомой планете это вряд ли это подойдет.

Гравитация на экзопланетах

Претендентом на самую большую экзопланету земного типа является экзопланета BD+20594b планета, диаметром в половину диаметра Нептуна и примерно такой же массой. На ее поверхности гравитационное притяжение в три раза больше чем на Земле.

Так выглядит экзопланета земного типа BD+20594b. Представляете, какие там закаты?

Вам будет интересно: #видео | В зоне Златовласки обнаружена экзопланета земного типа

Вообще, BD+20594b довольно странная планета, поскольку масса большинства скалистых миров составляет менее 1,6 массы нашей планеты и гораздо меньший радиус, так что вряд может и не стоит выбирать ее в качестве потенциально будущего дома.

Авторы работы, опубликованной в журнале The Physics Teacher отмечают, чтоиз594экзопланет, достаточно изученных для того, чтобы оценить на них силу тяжести, пригодными длячеловека являются 422(если непринимать вовнимание другие условия, которые могут быть и пострашнее гравитации). А как вы думаете, приземлятся ли люди когда-нибудь на эти далекие миры, по крайней мере в обозримом будущем? Ответ будем ждать здесь, а также в комментариях к этой статье.

Подробнее..

Существовали ли другие вселенные до Большого взрыва?

13.10.2020 00:08:42 | Автор: admin

По мнению Пенроуза, Вселенная будет продолжать расширяться до тех пор, пока вся ее материя в конечном итоге не распадется, после чего на ее месте возникнет новая.

«До Большого взрыва существовала более ранняя Вселенная, которую сегодня можно наблюдать. Большой Взрыв не был началом», — эти слова произнес английский физик и математик сэр Роджер Пенроуз во время вручения Нобелевской премии по физике в 2020 году. Британская The Telegraph также приводит слова выдающегося ученого: «Что-то существовало до Большого взрыва и это что-то продолжит свое существование в будущем». Нобелевский лауреат считает, что наш Большой взрыв начался с того, что являлось далеким будущим более ранней эпохи. Причина, по которой он так думает, заключается в таинственной физике черных дыр еще в 1964 году, спустя девять лет после смерти Эйнштейна, сэр Роджер предположил, что черные дыры являются неизбежным следствием Общей теории относительности (ОТО). Его новаторская статья до сих пор считается самым важным вкладом в теорию относительности со времен Эйнштейна и доказательства Большого взрыва.

Что такое «точки Хокинга»?

Пенроуз обнаружил шесть «теплых» точек в небе, называемых «точками Хокинга» («hawking points»), диаметр которых примерно в восемь раз больше диаметра Луны. Свое название они получили в честь британского физика-теоретика Стивена Хокинга, который утверждал, что черные дыры «пропускают» излучение и в конечном итоге полностью испаряются. Время, которое требуется черной дыре, чтобы полностью испариться, огромно, возможно, больше, чем возраст нашей нынешней Вселенной, поэтому их нельзя обнаружить. Однако Пенроуз считает, что «мертвые» черные дыры из предыдущих вселенных или «эонов» теперь наблюдаемы. Если он прав, это доказывает правильность теорий Хокинга.

У нас есть Вселенная, которая все расширяется и расширяется. Вся масса в ней распадается и в этой моей сумасшедшей теории это отдаленное будущее становится Большим взрывом другого Эона. Черные дыры в этой другой вселенной могли исчезнуть из-за испарения Хокинга и создать точки в небе, которые я называю точками Хокинга. Мы их видим. Эти точки примерно в восемь раз превышают диаметр Луны и представляют собой слегка прогретые области. На сегодняшний день у нас есть весомые доказательства существования по крайней мере шести из них.

Нобелевский лауареат по физике 2020 года, сэр Роджер Пенроуз.

Ранее в этом году в журнале Monthly Issues of the Royal Astronomical Society вышла работа сэра Пенроуза, посвященная точкам Хокинга. В статье представлены данные наблюдений многочисленных ранее ненаблюдаемых аномальных круглых пятен в космическом микроволном фоновом излучении (реликтовом излучении), со значительно повышенной температурой.

Еще больше увлекательных статей о последних научных открытиях в области теоретической физики, читайте на нашем канале Google News.

Реликтовое излучение это, по сути, электромагнитное излучение, оставшееся от самой ранней космологической эпохи, которая пронизывает всю вселенную. Считается, что реликтовое излучение сформировалось примерно через 380 000 лет после Большого Взрыва и содержит тонкие указания на то, как формировались первые звезды и галактики.

Точки Хокинга это, по сути, погибшие черные дыры, которые существовали до Большого взрыва (породившего нашу Вселенную) и которые пережили свои собственные Вселенные. Однако теперь они находятся на исходе своей жизни и испускают излучение, испаряясь в ничто. Нобелевский лауреат отмечает, что «наш Большой взрыв начался с чего-то, что было отдаленным будущим предыдущего Эона (Вселенной), и в ней были бы такие же черные дыры, как в нашей Вселенной, проходящие через испарение Хокинга. Именно они произвели бы эти точки в небе, которые я называю точками Хокинга.»

Вам будет интересно: Может ли Вселенная существовать бесконечно?

Спорная теория

Как отмечает The Telegraph, эта идея спорна, хотя многие ученые считают, что Вселенная существует в непрерывном цикле расширения, происходящем до «Большого сжатия», за которым следует новый Большой взрыв. Пенроуз также отметил, что в прошлом черные дыры считались теоретически существующими объектами. Подробнее о том, как выглядит черная дыра и как ученым удалось ее сфотографировать читайте в этой статье.

В 1988 году Роджер Пенроуз разделил премию Вольфа по физике с профессором Стивеном Хокингом за совместную работу над черными дырами.

Сэр Роджер разделил Нобелевскую премию по физике с профессорами Рейнхардом Герцелем из Института внеземной физики Макса Планка и Андреа Гез из Калифорнийского университета, которые доказали, что в центре Млечного Пути находится сверхмассивная черная дыра Стрелец А (Sagittarius A*).

Напомним, что черные дыры являются самыми таинственными объектами во Вселенной, не считая, конечно, темной энергии и темной материи. В 2017 году Нобелевскую премию по физике вручили ученым коллабораций LIGO и VIRGO за открытие гравитационных волн ряби пространства-времени, вызванной столкновением двух сверхмассивных черных дыр. Это открытие положило начало новой эре исследований гравитации.

Подробнее..

По мнению некоторых физиков цифровое бессмертие возможно

25.10.2020 18:03:41 | Автор: admin

«Я скоро вернусь» первый эпизод второго сезона британского научно-фантастического телесериала-антологии Чёрное зеркало.

Сегодня термин «цифровое бессмертие» звучит все чаще, но что это такое? Если вы смотрели сериал «Черное зеркало», то возможно помните эпизод, в котором вдова сначала создала цифровую копию погибшего в аварии мужа, а позже заказала андроида точную копию супруга, загрузив в него уже собранный цифровой образ. Согласитесь, все это выглядит несколько жутко. Но возможно ли нечто подобное в будущем? И даже если мы не будем брать в расчет версию о создании человекоподобных роботов, то создать точную цифровую копию человека можно уже сегодня и вряд ли это кого-то удивит: социальные сети, банковские и мобильные операции, мобильные приложения мы сами добровольно предоставляем информацию о себе, друзьях, родственниках, коллегах, сових перемещениях, вкусовых предпочтениях и покупках. Соберите всю эту информацию вместе и вуаля цифровой образ готов. Кстати, именно об этом говорит автор 4 бестселлеров New York Times, физик-теоретик и популяризатор науки Митио Каку, считая цифровое бессмертие возможным и наиболее вероятным.

Поиски фонтана молодости

Тема продления человеческой жизни является давней целью многих ученых и мечтателей. Исторически короли, королевы и императоры пытались найти источник молодости, но все они потерпели неудачу. Вместо Фонтана молодости Хуан Понсе де Леон основал первое европейское поселение на Пуэрто-Рико Флориду. А китайский император Цинь 2000 лет назад искал по всей стране эликсир бессмертия. Но не нашел, вместо чего, по-видимому, и основал Японию, а затем и Корею.

Более того, Эпос о Гильгамеше одно из старейших сохранившихся литературных произведений в мире, повествует о миссии полубога Гильгамеша, заключавшуюся в поисках секрета бессмертия. Так, на протяжении всей своей истории человечество безуспешно ищет источник вечной молодости. Но изменилось ли что-нибудь с наступлением цифрового века?

Доктор Митио Каку, профессор теоретической физики в Городском колледже Нью-Йорка (CUNY), где он преподает уже более 25 лет, считает, что человечество достигнет цифрового бессмертия. А это значит, что всю нашу жизнь можно оцифровать. В ролике для Big Think Каку утверждает, что однажды, когда вы пойдете в библиотеку, вам не нужна будет книга о Уинстоне Черчилле, например, так как вы сможете пообщаться с его голограммой, в которую заложены все манеры, речь и, возможно, даже воспоминания самого Уинстона Черчилля. Физик-теоретик предполагает, что точно также, в один прекрасный день ваши потомки могут пойти в библиотеку и поговорить с вами. Конечно, при условии, что вы захотите быть оцифрованными.

Если вам интересны новости науки и технологий, подпишитесь на наш Telegram-канал. Там вы найдете анонсы свежих новостей нашего сайта!

На фото физик-теоретик, автор многочисленных научно-популярных книг и телепередач Митио Каку

Только представьте, сколько операций по кредитным картам вы совершили за последние годы. Если эта информация попадет не в те руки, то с легкостью расскажет о вас если не все, то очень многое где вы любите отдыхать, какие предпочитаете напитки, чем занимаетесь в свое свободное время. Имея совокупность ваших цифровых данных, являющихся по-сути, цифровыми отпечатками пальцев, составить ваше цифровое резюме умелому человеку не составит туда. Но где-то здесь возникает вопрос будет ли ваша цифровая копия вами?

Доктор Каку, отвечая на этот вопрос, говорит о том, что все от того, что вы определяете под «собой» если это биологическая сущность с вашими воспоминаниями, тогда, конечно, это не вы. Но если вы определяете свое существо как энтропию и информацию, то есть если вы говорите, что ваша душа это информация, которая развивается со временем по законам энтропии, тогда вы можете быть оцифрованы и, в какой-то степени, бессмертны.

Читайте также: Возможно ли цифровое бессмертие и нужно ли оно

Биологическое бессмертие

Конечно, говоря о бессмертии нельзя не рассмотреть бессмертие биологическое и генетическое. «У нас есть искусственные интеллектуальные системы, которые могут сканировать огромные объемы данных и анализировать их, поэтому в будущем мы возьмем геномы миллионов пожилых людей и геномы миллионов молодых людей, пропустим их через систему искусственного интеллекта и выясним где сосредоточена ошибка,» говорит Каку.

Мы знаем, что старение это накопление ошибок клеточных ошибок, биологических ошибок, генетических ошибок. Энтропия вот что такое старение. Посмотрите на гренландскую акулу именно среди этих животных зафиксирован один из мировых рекордов для позвоночных возраст некоторых особей достигают 400 лет и больше. Но если некоторые позвоночные могут жить так долго, как у них это получается?

Одной из наиболее важных подсказок, по мнению профессора Каку, являются теломеры: защитные концевые участки хромосом, функция которых заключается в поддержании целостности ДНК и защите генов. Мы также знаем, что теломераза, например, может останавливать встроенные в клетки всех живых организмов на земле «биологические часы». Подробнее о том, что такое биологические часы, читайте в нашем материале.

Внутри клеточных ядер находится 23 пары хромосом. На концах каждой хромосомы расположены теломеры. Они защищают нашу ДНК от повреждений так же, как пластиковые наконечники защищают края шнурков.

Например, исследователи из Калифорнийского города Менло-Парк взяли обычные клетки кожи человека и нанесли на них теломеразу, в результате чего работа биологических часов в этих клетках была остановлена, а значит, клетки могут воспроизводиться вечно. Но в чем подвох? Проблема, по мнению физика, заключается в раковых клетках, а точнее в том, что они также используют теломеразу на пути к бессмертию. Видите ли, раковые клетки бессмертны; вот почему они убивают. Иронично, не так ли? То, что дарует нам погибель, таит в себе секреты бессмертия. Но если мы знаем, что теломераза может быть успешно использована раковыми клетками, возможно, в будущем, мы сможем использовать ее для продления жизни.

Итак, я хочу сказать очень простую вещь: у нас нет источника молодости. Однако я думаю, что это только вопрос времени, когда, возможно, наши внуки получат возможность достичь возраста 30 лет и… остановиться. Возможно, нам удастся остановить биологические часы. Этого нельзя исключить.

Физик-теоретик Митио Каку.

И все же, ученый считает, что мы должны достичь цифрового бессмертия и тогда, возможно, сможем остановить процессы старения. Согласны ли вы с доктором Каку или считаете, что бессмертие удел мечтателей и фантастов? Ответ будем ждать здесь, а также в комментариях к этой статье.

Подробнее..

Может ли квантовая механика объяснить существование пространства-времени?

04.11.2020 22:18:48 | Автор: admin

Ученые ищут ответ на вопрос о том из чего состоит пространство-время уже много лет, но пока безуспешно

Квантовая механика странная. Для нас, существ, не способных видеть микромир не вооруженным глазом, представить себе как все устроено на уровне атомов довольно сложно. Между тем, согласно атомной теории, все во Вселенной состоит из мельчайших частиц атомов, скрепленных друг с другом электрическими и ядерными силами. Физические эксперименты, проведенные в ХХ веке показали, что атомы можно дробить на еще более мелкие, субатомные частицы. В 1911 году британский физик Эрнест Резерфорд провел ряд экспериментов и пришел к выводу, что атом похож на Солнечную систему, только по орбитам вместо планет вокруг него вращаются электроны. Два года спустя, взяв за основу модель Резерфорда, физик Нильс Бор изобрел первую квантовую теорию атома и в этой области теоретической физики все стало еще сложнее. Но если квантовая механика объясняет как взаимодействуют между собой мельчайшие частицы, может ли она объяснить существование пространства-времени?

Что такое пространство-время?

Уверена, большинство из нас воспринимают пространственно-временной континуум как нечто, само собой разумеющееся. И в этом нет ничего удивительного, ведь не каждый день мы размышляем над чем-то подобным. Но если хорошенько задуматься, то окажется, что ответить на вопрос о том, что представляет собой пространство-время не так уж просто.

Начнем с того, что в соотвествии с теорией относительности (ОТО) Эйнштейна, Вселенная имеет три пространственных измерения и одно временное измерение. При этом все четыре измерения органически связаны в единое целое, являясь почти равноправными и в определенных рамках и условиях способными переходить друг в друга. В свою очередь пространственно-временной континуум или пространство-время это физическая модель, дополняющая пространство временным измерением.

Пространство-время непрерывно.

В рамках общей теории относительности пространство-время также имеет единую динамическую природу, а его взаимодействие со всеми остальными физическими объектами и есть гравитация.

В рамках ОТО теория гравитации и есть теория пространства-времени, которое не является плоским и способно менять свою кривизну.

Из ОТО также следует, что гравитация является результатом массы, такой как планета или звезда, искажающая геометрию пространства-времени. Космический аппарат NASA Gravity Probe, запущенный в 2004 году, точно измерил, насколько гравитация Земли искривляет пространство-время вокруг нее, в конечном итоге подтвердив расчеты Эйнштейна. Но откуда взялось пространство-время? Ответ, как это ни странно, может скрывать в себе квантовая механика.

Квантовая механика и теория гравитации

Как пишет портал Astronomy.com, сегодня физики стоят на пороге революции, которая может привести к пересмотру всего что мы знаем о пространстве-времени и, возможно, к объяснению того, почему квантовая механика кажется такой странной.

«Пространство-время и гравитация должны в конечном итоге возникнуть из чего-то другого», пишет физик Брайан Свингл из Университета Мэриленда в статье, опубликованной в журнале Annual Review of Condensed Matter Physics. Иначе трудно понять, как гравитация Эйнштейна и математика квантовой механики могут примирить их давнюю несовместимость.

Квантовая механика противоречит ОТО

Взгляд Эйнштейна на гравитацию как проявление геометрии пространства-времени был чрезвычайно успешным. Но то же самое относится и к квантовой механике, которая с безошибочной точностью описывает махинации материи и энергии на атомном уровне. Однако попытки найти математическое решение, которое совместило бы квантовую странность с геометрической гравитацией, наталкивались на серьезные технические и концептуальные препятствия.

Хотите всегда быть в курсе последних новостей из мира популярной науки и высоких технологий? Подписывайтесь на наш новостной канал в Google News чтобы не пропустить ничего интересного.

По крайней мере, так было долгое время при попытках понять обычное пространство-время. Возможный ответ пришел из теоретического изучения альтернативных геометрий пространства-времени, мыслимых в принципе, но обладающих необычными свойствами. Одна из таких альтернатив известна как антидеситтеровское пространство, которое имеет тенденцию сжиматься само по себе, а не расширяться, как это делает Вселенная. Для жизни, безусловно, это было бы не самое приятное место. Но как лаборатория для изучения теорий квантовой гравитации, оно может многое предложить и даже стать ключом к квантовым процессам, которые могут быть ответственны за создание пространства-времени.

Что такое антидеситтеровское пространство?

Исследования антидеситтеровское пространства предполагают, например, что математика, описывающая гравитацию (то есть геометрию пространства-времени), может быть эквивалентна математике квантовой физики в пространстве с одним меньшим измерением.

Представьте себе голограмму плоскую двумерную поверхность, которая включает в себя трехмерное изображение. Подобным же образом, возможно, четырехмерная геометрия пространства-времени может быть закодирована в математике квантовой физики, работающей в трехмерном пространстве. Или, может быть, нужно больше измерений а вот сколько измерений требуется, являются частью проблемы, которую нужно решить.

Квантовая запутанность одна из сложнейших для понимания научных теорий

Во всяком случае, исследования в этом направлении открыли удивительную возможность: само пространство-время может быть порождено квантовой физикой, в частности загадочным явлением, известным как квантовая запутанность. Подробно о том, что представляет собой квантовая запутанность я рассказывала в этой статье.

Если попробовать объяснить более-менее простыми словами, то квантовая запутанность это сверхъестественная связь между частицами, разделенными огромными расстояниями. Испускаемые из общего источника, такие частицы остаются запутанными независимо от того, как далеко они друг от друга находятся. Если вы измерите свойство (например, спин) одной частицы, то узнаете, каким будет результат измерения спина другой частицы. Но до измерения эти свойства еще не определены, что противоречит здравому смыслу и подтверждается многими экспериментами. Кажется, что измерение в одном месте определяет, каким будет измерение в другом отдаленном месте.

Вам будет интересно: Почему квантовая физика сродни магии?

Энергичные усилия нескольких физиков подарили миру теоретические доказательства того, что сети запутанных квантовых состояний плетут ткань пространства-времени. Эти квантовые состояния часто описываются как «кубиты» биты квантовой информации. Запутанные кубиты создают сети с геометрией в пространстве с дополнительным измерением, выходящим за пределы числа измерений, в которых находятся кубиты. Таким образом, квантовую физику кубитов можно приравнять к геометрии пространства с дополнительным измерением.

Примечательно, что геометрия, созданная запутанными кубитами, может очень хорошо подчиняться уравнениям из общей теории относительности Эйнштейна, которые описывают движение под действием гравитации по крайней мере, последние исследования указывают в этом направлении.

Подводя итог отмечу, что никто точно не знает, какие квантовые процессы в реальном мире ответственны за соткание ткани пространства-времени. Возможно, некоторые допущения, сделанные в уже имеющихся расчетах, окажутся ошибочными. Но вполне возможно, что физика стоит на пороге проникновения в основы природы глубже, чем когда-либо. В существование, содержащее ранее неизвестные измерения пространства и времени.

Подробнее..

Физики полагают, что наша цивилизация падет в течение десятилетий. Но почему?

16.08.2020 14:19:31 | Автор: admin

Если не остановить обезлесение, наш цивилизация падет в течение 40 лет

В разгар глобального кризиса здравоохранения нам всем не хватает хороших новостей. Но реальность такова, что новостей тревожных сегодня больше и их нельзя игнорировать. Еще каких-то 30-40 лет назад наши родители с оптимизмом и уверенностью смотрели в будущее, но мы с вами не можем себе этого позволить по целому ряду причин, первой и важнейшей из которых является изменение климата. Хотим мы этого или нет, но мир стоит на пороге экологической катастрофы именно такие слова в интервью с Владимиром Познером произнес выдающийся интеллектуал современности, лингвист Ноам Хомский. Его слова подтверждает новая работа физиков-теоретиков, опубликованная в журнале Nature Scientific Reports, согласно которой вероятность гибели человеческой цивилизации в результате обезлесения составляет 90%.

Леса Земли

Ну что ж, пришла пора поговорить о будущем планеты. Физики из Института Алана Тьюринга в Лондоне и университета Тарапаки в Чиле провели пару статистических исследований в ходе которых пришли к выводу о том, что безудержное потребление ведет человечество к «быстрому катастрофическому коллапсу», который может произойти в ближайшие два четыре десятилетия. Безусловно, это теоретическая работа, имеющая ряд ограничений например, неизменность вырубки лесов и потребления ресурсов планеты, однако к ее выводам стоит прислушаться и вот почему.

В прошлом, еще до того как один вид животных стал доминирующим на нашей планете (речь идет о Homo Sapiens), леса покрывали по меньшей мере 60 миллионов квадратных километров суши. Однако в настоящий момент менее 40 миллионов квадратных километров Земли можно назвать лесистой местностью.

Расчеты показали, что при сохранении нынешних темпов роста населения и потребления ресурсов, в частности лесных, наша цивилизация находится всего в нескольких десятилетиях до необратимого краха.

Жерардо Акино (Gerardo Aquino) и Мауро Болонья (Mauro Bologna), авторы научной работы.

С исследователями трудно не согласиться плотность леса, или же нынешнее отсутсвие таковой, является катастрофической. Лесные пожары в Бразилии и Сибири, о чем мы рассказывали ранее, ускорили и без того стремительный и опасный процесс обезлесения. Сравнивая темпы вырубки лесов с темпами потребления человечества, Болонья и Акино определили, что даже по самым оптимистичным оценкам существует 90% вероятность того, что наш вид в течение десятилетий канет в небытие.

Вырубка лесов Амазонки выросла на рекордные 25% в первой половине 2020 года.

Чтобы всегда быть в курсе последних новостей из мира науки и высоких технологий, подписывайтесь на наш новостной канал в Telegram.

Отмечу, что в последние несколько десятилетий дискуссия об изменении климата приобрела глобальное значение, что отразилось на национальной и глобальной политике. В качестве возможных причин наблюдаемых изменений ученые рассматривают ряд факторы, обусловленных деятельностью человека: чаще других упоминаются загрязнение воды и воздуха (главным образом парниковый эффект), а также вырубка лесов. Хотя степень человеческого вклада в парниковый эффект и температурные изменения все еще остается предметом обсуждения, обезлесение является неоспоримым фактом.

Вымирание человечества

Основываясь на текущих темпах потребления ресурсов и наилучшей оценке технологического роста, результаты проведенного исследования показывают, что если в ближайшие годы ничего не изменится речь идет о вырубке лесов, добыче ископаемого топлива, загрязнении планеты пластиковыми отходами и др. вероятность нашей цивилизации выжить составляет менее 10%. И это по самой оптимистичной оценке. В то время как большое внимание уделялось тому, каким образом парниковые газы способствовали гибели нашего вида, Акино сосредоточил математические модели на неоспоримом факте обезлесения, вызванного деятельностью человека.

Отмечу, что целью настоящей работы является не предсказание ужасного будущего (как вы могли подумать), а как раз наоборот исследователи хотели понять, что можно сделать, чтобы избежать самоуничтожения. Исследователи ввели в переменные небезызвестный «парадокс Ферми», который относится к теоретическому обсуждению существования внеземных, разумных цивлизаций. Подробнее о том, одиноки ли мы во Вселенной, я писала в этой статье.

Самые оптимистичные прогнозы предрекают нашей цивилизации не более 20-40 лет жизни.

Читайте также: 11 тысяч ученых предупреждают: изменение климата может нас уничтожить

Одним из аспектов этого дискурса является идея о том, что саморазрушение, вызванное неустойчивой эксплуатацией окружающей среды, может быть неизбежностью разумной жизни и, следовательно, потенциальной причиной, по которой мы до сих пор не встретились с нашими галактическими соседями. Во избежание самоуничтожения инопланетное общество должно было отдать приоритет «культуре потребления», что авторы научной работы справделиво считают маловероятным, основываясь на человеческом опыте.

Исследователи отмечают, что даже если бы разумные формы жизни были распространенным явлением во Вселенной, лишь очень немногие из них смогли бы достичь достаточного технологического уровня развития, чтобы заселить собственную Солнечную систему, прежде чем рухнуть из-за чрезмерного потребления ресурсов. Выходит, ответ на вопрос «где все?» может быть печальным. А что вы думаете по этому поводу? Ответ будем ждать здесь, а также в комментариях к этой статье.

Подробнее..

Что такое бозон Хиггса и почему ученые хотели его открыть

27.08.2020 00:12:52 | Автор: admin

В основе основ всегда есть что-то. Вопрос в том, как это найти.

Многие что-то где-то слышали про бозон Хиггса, а некоторые даже пробовали разобраться в вопросе того, что это такое. В итоге, объяснение данного процесса такое сложное, что понять все это не так легко. Мы просто знаем, что это важно, и все. Хотя иногда даже складывается ощущение, что ученые от нас что-то скрывают, и на самом деле аппаратура на миллиарды долларов, включая Большой адронный коллайдер, просто не нужна. Конечно, это не так, и физики сделали большое открытие (и продолжают делать новые), вот только надо понимать, даст ли это что-то нам с вами. Я имею в виду простых людей, которым интересно прочитать и удивиться, сколько денег потратили на новую лабораторию, но куда интереснее получить от этого какие-то преимущества. Давайте попробуем понять, светит ли нам мир во всем мире и будет в наших домах теплей от обнаружения бозона Хиггса. Да и вообще, что это такое.

Что такое бозон Хиггса

Прежде, чем рассказывать, чем является одно из самых важных открытий современной физики, надо дать этому определение. Желательно сделать это простым языком, а не так, чтобы его поняли только дипломированные физики. Этим и займемся.

Сделать это совсем просто — не просто. Еще в начале девяностых годов прошлого века в разных научных сообществах даже учреждались премии, которые должны были стимулировать ученых придумывать простые объяснения главной частицы всех теорий. Получалось так себе, но версии были очень разные.

Физики отчаянно хотят, чтобы бозон Хиггса был ошибкой

Например, одна из версий абстрактно сравнивала ситуацию с вечеринкой. Приводилась в пример группа людей, которая присутствует на каком-либо мероприятии, куда в какой-то момент заходит известный человек. Для наглядности можно даже сказать знаменитый. В итоге, некоторые люди в помещении начинают перемещаться в его сторону и идут за ним, так как хотят с ним пообщаться.

Во время такого следования толпа может разбиваться на небольшие группы, которые, допустим, будут обсуждать какие-то новости или сплетни. Постепенно они начнут передавать сплетню друг другу и начнут образовывать уплотнения.

Физики наконец-то увидели, на что распадается бозон Хиггса

В этом объяснении помещение является полем Хиггса, знаменитость является частицей, движущейся в поле, а группы людей будут представлять из себя возмущения этого поля. Ничего не понятно? Согласен! Но ведь это одно из самых простых объяснений. Если вы можете более просто объяснить, что такое бозон Хиггса, расскажите об этом в нашем Telegram-чате. Может у вас получится.

Где-то тут должна ходить знаменитость и тогда мы поймем, что такое бозон Хиггса. Или нет…

Существует ли бозон Хиггса

Бозон Хиггса является фундаментальной частицей Стандартной модели. До недавнего времени найти ее было невозможно. При этом существование такой частицы физики предсказывали еще в шестидесятые годы прошлого века. У них не было оборудования, которое позволяло бы доказать существование таких частиц, и им нужен был инструмент, который создали только существенно позже. Произошло это в 2008 году, когда в ЦЕРНе (Европейский совет ядерных исследований) появился Большой адронный коллайдер.

Стандартная модель является теоретической конструкцией, применяемой в физике элементарных частиц. Она описывает электромагнитное взаимодействие всех элементарных частиц (слабое и сильное). Стандартная модель не описывает некоторые стороны физики, например, темную материю. Именно поэтому ее нельзя называть теорией всего. Картинка стандартной модели полностью сложилась, когда открыли бозон Хиггса.

Почему бозон Хиггса называют частицей Бога

С 2008 год ученые подкованы поисках Частицы Бога (одно из названий бозона Хиггса). Так ее называют по предложению Леона Ледермана, который был нобелевским лауреатом и выпустил книгу с заголовком, начинающимся с этих слов. Хотя самому ученому больше по душе было название Проклятая частица, но оно как-то не прижилось.

Благодаря этому американскому ученому бозон Хиггса стали называть именно так.

Как говорится, хоть чертом лысым назови, но частицу в итоге нашли и произошло это в 2012 году. Помог в обнаружении как раз тот самый Большой адронный коллайдер. При этом после обнаружения ученые сообщили об этом, но не торопились делать поспешных выводов и выступали очень осторожно. В первые дни после эксперимента ученые говорили, что они только нашли элементарную частицу, похожую на бозон Хиггса.

Что даст обнаружение частицы Бога

Немного абсурдный пример. Какое-нибудь насекомое живет под землей и никогда не вылезает на поверхность, но догадывается, что небо синее (вот такое умное насекомое). Потом оно видит синий цвет и понимает, какое на самом деле небо, и что оно было право. Вот только изменит ли это что-то с точки зрения самого неба? Конечно, нет. Оно как было синим, так и осталось, а насекомое, как жило под землей, так и продолжило там жить.

Почему наша Вселенная такая странная и существуют ли законы физики?

Примерно так же дела обстоят и с бозоном Хиггса. Он не позволит начать нам путешествовать во времени, не поспособствует созданию вечного двигателя и не станет основной лекарства от всех болезней. По сути его обнаружение просто подтвердило предполагаемые принципы взаимодействия частиц и свело воедино все утверждения Стандартной теории. Возможно, из-за его появления вопросов в других областях физики, наоборот, станет только больше.

Визуализаций поиска бозона Хиггса очень много.

Где можно применить бозон Хиггса

На практике применение бозона Хиггса пока невозможно, да и не понятно, где его применять. Зато он важен для фундаментальной физики. Ну, хотя бы он не привел к концу света, о котором говорили многие скептики. Были даже теории о том, что столкновение частиц в Большом адронном коллайдера может породить черную дыру, которая поглотит всю нашу Солнечную систему. А Дэн Браун в своей известной книге Ангелы и демоны сделал основной сюжета охоту за антивеществом, которое злоумышленники похитили в ЦЕРН.

Бозон Хиггса: портал в темный мир?

В итоге у нас (у человечества) есть бозон Хиггса и Большой адронный коллайдер в центре Европы, стоимость строительства которого превысила 10 миллиардов долларов. Практической пользы для простых людей чуть меньше, чем нет совсем, но звучит вся эта история интересно. Ну, хоть физики довольны — может найдут применение своей находке.

Подробнее..

Парадокс Вигнера что нужно знать о двойственности реальности?

02.09.2020 22:08:51 | Автор: admin

Причуды квантовой механики наблюдатель за наблюдателями

Квантовая механика странная, она противоречит здравому смыслу. Результаты исследования, проведенного в 2019 году показали, что итоги различных процессов в квантовом мире зависят от наблюдателя. Еще в 1960-х гг. американский физик венгерского происхождения Юджин Вигнер усложнил знаменитый мысленный эксперимент кота Шредингера, в котором кошка оказывается запертой в коробке с ядом, который высвобождается при распаде радиоактивного атома. Радиоактивность это квантовый процесс, поэтому история гласит, что атом в коробке и распался и не распался одновременно, оставив несчастное животное в подвешенном состоянии между жизнью и смертью так называемой квантовой суперпозиции. Но каково это, быть одновременно живым и мертвым?

Парадокс Вигнера усложненный эксперимент кота Шредингера. Вигнер ввел категорию "друзей" в результате чего кот в коробке остается жив.

Квантовый парадокс

Представьте человека, запертого в лаборатории и измеряющего квантовую систему. Вигнер утверждал, что абсурдно говорить, что он существует в суперпозиции (так как одновременно видит и не видит распад атома), пока дверь лаборатории закрыта. Мысленный эксперимент показывает, что вещи могут стать очень странными, если наблюдатель наблюдает за наблюдателями.

Квантовый физик из университета Гриффита в Брисбене (Австралия) Нора Тишлер и ее коллеги провели версию эксперимента Вигнера, объединив классический мысленный эксперимент с другой квантовой теорией квантовой запутанностью феноменом, связывающим частицы на огромных расстояниях. Исследователи также вывели новую теорему, которая накладывает самые сильные ограничения на фундаментальную природу реальности. Работа опубликована в журнале Nature Physics.

Издание Scientific American приводит слова физика-теоретика Эфраима Штейнберга из университета Торонто, который не принимал участия в исследовании, о том, что новая работа является «важным шагом вперед в области экспериментальной метафизики.»

Пока за квантовой системой не наблюдают, она не обязательно будет обладать определенными свойствами.

Это интересно: Физики придумали как спасти кота Шредингера

Квантовая вероятность

До 1920-х годов физики с уверенностью предсказывали результаты экспериментов. Но квантовая теория, по-видимому, изначально вероятностна: до тех пор, пока свойства системы не будут измерены, они могут охватывать мириады значений. Эта суперпозиция коллапсирует в одно состояние только при наблюдении за системой, и физики не могут точно предсказать, каким будет это состояние. Вигнер придерживался популярной тогда точки зрения, что сознание каким-то образом вызывает коллапс суперпозиции. Таким образом, его гипотетический друг определит результат, когда он или она произведут измерения и Вигнер никогда не увидит его или ее в суперпозиции.

С тех пор эта точка зрения вышла из моды. «Люди, занимающиеся основами квантовой механики, быстро отвергают точку зрения Вигнера как призрачную и неопределенную, потому что она делает наблюдателей особенными»,-говорит Дэвид Чалмерс, философ и когнитивист из Нью-Йоркского университета. Сегодня большинство физиков сходятся во мнении, что неодушевленные объекты могут вывести квантовые системы из суперпозиции с помощью процесса, известного как декогеренция.

Конечно, исследователи, пытающиеся манипулировать сложными квантовыми суперпозициями в лаборатории могут обнаружить, что их тяжелая работа разрушается быстрыми частицами воздуха, сталкивающимися с их системами. Поэтому они проводят испытания при ультракоротких температурах и пытаются изолировать аппараты от вибраций.

Еще больше увлекательных статей о том, как устроена наша Вселенная, читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте.

Отмечу, что за последние десятилетия появилось несколько конкурирующих интерпретаций, наиболее экзотической из которых является точка зрения «многих миров», согласно которой всякий раз, когда вы делаете квантовое измерение, реальность разрушается, создавая параллельные вселенные. Таким образом, друг Вигнера разделился бы на две копии и действительно смог бы измерить нахождение в суперпозиции вне лаборатории.

Альтернативная «Бомовская» теория (названная в честь физика Дэвида Бома) гласит, что на фундаментальном уровне квантовые системы действительно обладают определенными свойствами; мы просто недостаточно знаем об этих системах, чтобы точно предсказать их поведение. Другая интригующая интерпретация называется ретрокаузальностью. Согласно ей события в будущем влияют на прошлое.

Проблема в том, что каждая интерпретация одинаково хороша или плоха в предсказании результатов квантовых тестов, поэтому выбор между ними дело вкуса. Никто не знает, что это за решение. Мы даже не знаем, является ли список возможных решений, которыми мы располагаем, исчерпывающим.

Квантовая физика похожа на магию

Другие модели, называемые теориями коллапса, действительно дают проверяемые предсказания. Эти модели опираются на механизм, который заставляет квантовую систему коллапсировать, когда она становится слишком большой, одновременно объясняя, почему кошки, люди и другие макроскопические объекты не могут находиться в суперпозиции. Ведутся эксперименты по поиску сигнатур таких коллапсов, но пока исследователи ничего не нашли. Квантовые физики также помещают все более крупные объекты в суперпозицию: в 2019 команда в Вене сообщила, что делает это с молекулой в 2000 атомов.

Большинство квантовых интерпретаций гласят, что нет никаких причин, по которым эти усилия по сверхразмерным суперпозициям не должны продолжаться вечно, предполагая, что исследователи могут разработать правильные эксперименты в первозданных лабораторных условиях, чтобы избежать декогеренции.

Теории коллапса, однако, утверждают, что однажды будет достигнут предел, независимо от того, насколько тщательно подготовлены эксперименты.

Наблюдатель за наблюдателями

Тишлер и ее коллеги были вдохновлены новой волной теоретических и экспериментальных работ, которые исследовали роль наблюдателя в квантовой теории, привнося запутанность в классический эксперимент Вигнера. Предположим, вы берете две частицы света или фотоны, которые поляризованы таким образом, что могут вибрировать горизонтально или вертикально. Фотоны также могут быть помещены в суперпозицию вибрирующих как горизонтально, так и вертикально одновременно, точно так же, как парадоксальный Кот Шредингера может быть как живым, так и мертвым но ровно до того момента, как за ним установлено наблюдение.

В общем и целом исследователи в очередной раз подтверждают квантовая физика сродни магии.

Подробнее..

Возможны ли путешествия во времени с точки зрения математики?

05.10.2020 20:14:35 | Автор: admin

Путешествие во времени детерминировано и локально свободно, говорится в новой статье, разрешающей вековой парадокс.

Вряд ли сегодня на Земле найдется человек, который ни разу не задумывался о путешествиях во времени. Во многом это заслуга популярной культуры с самого момента своего возникновения, концепция путешествий во времени вошла в культуру и повлияла на наше восприятие времени. Как пишет в своей книге «Путешествия во времени. История» американский писатель, историк науки Джеймс Глик, самой концепции таких путешествий немногим более сотни лет. Так, если верить «Оксфордскому словарю английского языка», впервые термин «путешествие во времени» (англ. time travel) появился в английском языке в 1914 году обратным словообразованием от уэллсовского Путешественника во Времени (так писатель-фантаст Гербер Уэллс называет главного героя своего романа Машина времени (1895)). Выходит, каким-то невероятным образом большую часть своей истории человечество жило не задаваясь вопросом о том, что было бы, отправься они в прошлое или будущее. Теперь же, физики из Университета Кливленда разрешили вековой парадокс, доказав, что с точки зрения математики путешествия во времени теоретически возможны.

Парадокс дедушки

В ходе исследования, опубликованного в журнале Classical and Quantum Gravity физики из Университета Квинсленда использовали математическое моделирование, чтобы согласовать Общую теорию относительности (ОТО) Эйнштейна с классической динамикой. Теория Эйнштейна допускает возможность того, что человек, используя временную петлю, отправляется назад во времени, чтобы убить своего деда. Однако классическая динамика диктует, что последовательность событий, последовавших за смертью дедушки, завершится тем, что путешественник во времени перестанет существовать.

Британская The Independent приводит слова слова авторов исследования Жермена Тобара и Фабио Коста о том, что в течение многих лет они ломали голову над тем, как классическая динамика может соответствовать предсказаниям Эйнштейна. Их размышления в итоге привели к созданию математической модели, призванной выяснить могут ли эти две теории сосуществовать. В основу модели легла, как это не странно, пандемия коронавируса.

Допустим, вы путешествовали во времени, пытаясь остановить нулевого пациента Covid-19 от заражения вирусом. Однако если вы остановите этого человека от заражения, это устранит мотивацию для вас вернуться и остановить пандемию. Это парадокс непоследовательность, которая часто заставляет людей думать, что путешествия во времени не могут происходить в нашей Вселенной. Логически это трудно принять, потому что это повлияло бы на нашу свободу совершать любые произвольные действия. Это означало бы, что вы можете путешествовать во времени, но не можете сделать ничего, что вызвало бы возникновение парадокса.

Фабио Коста (слева) и Жермен Тобар (справа).

Подписывайтесь на наш новостной канал в Telegram чтобы первым узнавать новости о последних научных открытиях.

Несмотря на то, что сама математика сложна, она сводится к чему-то довольно простому. Дискуссия о путешествиях во времени фокусируется на замкнутых кривых, подобных времени, что впервые предположил Альберт Эйнштейн. И Тобар и Коста считают, что до тех пор, пока только две части целого сценария в рамках Cпециальной теории относительности (СТО) все еще находятся в «причинном порядке», остальное подчиняется свободе воли.

В примере с нулевым пациентом с коронавирусом вы можете попытаться остановить заражение нулевого пациента, но при этом вы подхватите вирус и сами станете нулевым пациентом или это будет кто-то другой. Что бы вы ни делали, основные события будут просто перестраиваться вокруг вас. Это будет означать, что вне зависимости от ваших действий пандемия произойдет, давая вашему молодому «я» мотивацию вернуться и остановить ее.

Как бы вы ни старались создать парадокс, события всегда будут приспосабливаться друг к другу, чтобы избежать любого несоответствия. Ряд математических процессов, которые обнаружили исследователи, показывают, что путешествия во времени со свободой воли логически возможны в нашей Вселенной без какого-либо парадокса.

Высокоточный машины времени сегодня есть только в фильмах и математических расчетах

Хотя это звучит разочаровывающе для человека, пытающегося предотвратить пандемию или убить Гитлера, математикам это помогает понять как мы думаем о времени. Так или иначе, новое исследование предполагает, что любой, кто в конечном итоге разрабатывает способ осмысленного путешествия во времени, может сделать это и экспериментировать без скрытого страха разрушить мир по крайней мере, не сразу.

Удивительная физика

Новое открытие также примечательно тем, что сглаживает проблемы с другой гипотезой, согласно которой путешествия во времени возможны, но сами путешественники будут ограничены в том, что делают это останавливает их от создания парадокса. В такой модели путешественники во времени могут делать все, что хотят, но парадоксы невозможны.

Читайте также: Возможны ли путешествия во времени?

Но несмотря на цифры и полученные результаты, главной проблемой путешествий во времени остается искривление пространства и времени, необходимое для того, чтобы попасть в прошлое машины времени, которые ученые разработали до сих пор, настолько высоконадежны, что в настоящее время существуют только как вычисления на странице. И все же, исследователи настроены оптимистично, ведь их работа предполагает, что мы будем свободны делать с миром все, что захотим в прошлом: он будет соответствующим образом перестраиваться.

Подробнее..

Почему физики считают, что мы живем в Мультивселенной?

18.08.2020 18:11:46 | Автор: admin

Если теория Мультивселенной верна, то что это означает для каждого из нас?

Несмотря на научный прогресс и последние достижения человечества, наши знания о Вселенной крайне малы. Причина, отчасти, заключается в том, что мы с трудом можем представить себе такие концепции (или понятия), как, например, бесконечность или Большой взрыв, а также то, что было до него. В поисках ответов на важнейшие вопросы ученые рассматривают даже самые противоречивые и спорные теории. Одной из таких является теория Мультивселенной. Некоторые основоположники теории инфляции, в том числе физик из Стэнфордского университета Андрей Линде, выдвинули идею о том, что квантовые флуктуации во время инфляции породили не только галактики, но и целые вселенные. Из этой статьи вы узнаете, почему теории Мультивселенной стоит уделить внимание.

Согласно космологической модели горячей Вселенной, эволюция Вселенной начинается с состояния плотной горячей плазмы, которая состоит из элементарных частиц и протекает при дальнейшем расширении Вселенной.

Популярная теория

Прежде чем погрузиться в тонкости увлекательной теории Мультивселенной, напомню, что инфляционная модель Вселенной это гипотеза о физическом состоянии и законе расширения молодой Вселенной (вскоре после Большого взрыва), которая противоречит космологической модели горячей Вселенной. Дело в том, что эта общепринятая модель не лишена недостатков, многие из которых были решены в 1980-х годах ХХ века именно в результате построения инфляционной модели Вселенной.

Примечательно, что какой бы далекой наука о Вселенной не казалась неискушенному читателю, популярная культура совместно с учеными проделали по-настоящему потрясающую работу. Так, в последние годы жизни выдающийся физик-теоретик Стивен Хокинг трудился над темами, от которых у большинства исследователей по их же признанию «болит голова»: Хокинг в соавторстве с физиком Томасом Хертогом из Католического университета Левена в Бельгии работали над уже знаменитой статьей, посвященной проблеме Мультивселенной.

Как это часто случается в эпоху фейковых новостей и дезинформции, из-за того, что работа Хокинга и Хертога была размещена на сервере препринтов Airxiv (на этом сервере ученые обмениваются черновиками статей, прежде чем они будут опубликованы в рецензируемых научных журналах), это породило множество безосновательных сообщений о том, что Стивен Хокинг предсказал конец света а заодно предложил способ обнаружения альтернативных вселенных.

Вам будет интересно: Кто такой Стивен Хокинг? Часть первая: восхождение легенды

На самом же деле само исследование, опубликованное позже в журнале Journal of High Energy Physics, не столь сенсационно. В работе речь идет о парадоксе: если Большой Взрыв породил бесконечные вселенные с неисчерпаемым числом вариаций законов физики, то как ученые могут надеяться ответить на фундаментальные вопросы о том, почему наша Вселенная выглядит именно так как выглядит?

На фото британский физик-теоретик, космолог и астрофизик, писатель Стивен Хокинг

Когда Вселенная возникла, а это произошло примерно 13,8 миллиардов лет назад, она подверглась инфляционно-экспоненциальному расширению за очень короткий промежуток времени. В ходе этого процесса, крошечные квантовые флуктуации в пространстве были увеличены до космических размеров, создавая семена структур, которые станут галактиками и осветят вселенную. Однако, и это еще более удивительно, физик Андрей Линде предполагает, что инфляция по-прежнему происходит. Еще несколько лет назад в интервью The Washington Post он сравнил космос с постоянно растущим куском швейцарского сыра.

Похожие на дырки в сыре «карманные вселенные» это места, где локальная инфляция прекратилась, позволяя материи конденсироваться, а звездам и галактикам образовываться. Мы вполне можем жить в одном из этих карманов, оторванные от бесконечных альтернативных вселенных, существующих вокруг нас, и пребывающие в блаженном неведении.

Андрей Линде, профессор Стэндфордского университета, основоположник теории инфляционного расширения Вселенной, предусматривающей наличие множественной вселенной, или Мультивселенной.

И да, если эта идея слишком сильно вас удивляет, вы не одиноки. Некоторые космологи всерьез опасаются «вечной инфляции» — и Мультивселенной, которая может возникнуть из нее. Во-первых, если различные карманные вселенные разъединены, то как мы вообще сможем проверить, что они существуют? Во-вторых, бесконечная Мультивселенная не поддается математическому анализу, что затрудняет использование модели для понимания того, как все работает и взаимодействует в космосе. Вопросов действительно очень много, так что давайте попробуем разобраться в этой увлекательной и популярной теории.

Geek Picnic Online 2020

Теория Мультивселенной сегодня настолько популярна, что стала главной темой крупного европейского научно-популярного фестиваля (традиционно open air), посвященного современным технологиям, науке и творчеству Geek Picnic Online 2020. Среди приглашенных 122 спикеров были профессор Линде его лекцию на русском языке можно посмотреть здесь, а также ирландский писатель фантаст Йен Макдональд. Как пишут организаторы фестиваля в официальном паблике мероприятия во Вконтакте, лекция Макдональда будет опубликована позже.

Скриншот лекции Андрея Линде, посвященной Мультивселенной

Как объясняет Линде, согласно теории Большого взрыва, после своего рождения Вселенная была очень маленькая, но в какой-то момент начала расширяться. При этом, в ранней Вселенной было намного больше энергии, чем сегодня. Часть этой энергии впоследствии ушла на расширение Вселенной. Однако главный вопрос заключается в том, откуда взялась вся эта энергия.

Представьте, что вечером ваши карманы пусты, а на утро в них лежит миллиард долларов, говорит Линде. Но ведь в реальной жизни ничего подобного не происходит. Важно понимать, что все процессы, из-за которых родилась Вселенная, начались спонтанно.

Сегодня мы видим лишь малую часть Вселенной. Ученые называют доступную для наблюдений Вселенную "наблюдаемой Вселенной".

Инфляционная модель Вселенной

В самом начале, когда размер Вселенной не превышал и сантиметра, в ней находилось примерно 10 в 90 степени областей, которые никак не соприкасались друг с другом. Но почему и как в таком случае, они вдруг «поняли», что Вселенной пора расширяться? На самом деле это известная космологическая проблема, которая называется проблемой горизонта (horizon problem). Она возникает из-за сложности объяснения наблюдаемой однородности причинно несвязных областей пространства в отсутствие механизма, задающего одинаковые начальные условия.

Итак, если с помощью телескопа попробовать заглянуть в прошлое, то мы увидим свет от Большого взрыва, которому потребовалось 13,8 миллиардов лет чтобы добраться до нас. Однако Линде указывает на то, что мы видим Вселенную ограниченно. Угол обзора проще всего представить вытянув обе руки влево и вправо суть в том, что мы находимся в центре и не видим того, что находится за пределами кончиков пальцев обеих рук. Более того, ни правая ни левая рука «понятия не имеет о том, что делает другая».

Наблюдаемую Вселенную проще всего представить в виде сферы, за пределами которой находится неизвестность. На изображении наблюдаемая Вселенная в логарифмическом масштабе.

Следующим не менее важным вопросом является причина, по которой наша Вселенная не вращается. Напомню, все массивные космические объекты от планет до Солнца вращаются, даже сверхмассивные черные дыры в ядрах галактик. При этом, в какое бы направление не посмотрел наблюдатель с Земли вверх, вниз, влево или вправо он увидит равные расстояния. Ученые называют это изотропностью одинаковостью физических свойств во всех направлениях, а также симметрией по отношению к выбору направления.

Выходит, наша Вселенная и правда настолько странная, что ответить на огромное количество вопросов с помощью одной только теории Большого взрыва нельзя. И в самом деле, как объяснить, что Вселенная находясь в вакууме продолжает расширяться с ускорением? Ведь в вакууме нет никаких частиц вообще!

Вакуум пространство без вещества. В прикладной физике под вакуумом понимают среду, состоящую из газа при давлении значительно ниже атмосферного.

Ответ кроется в физике элементарных частиц. Так, Лоуренс Краусс физик-теоретик и президент Origins Project Foundation написал книгу, посвященную этому вопросу, она так и называется «Все из ничего. Как возникла Вселенная,» рекомендуем к прочтению. Андрей Линде в свою очередь считает, что некоторые частицы в вакууме обладают энергетическим зарядом и могут появиться в результате распада вакуума.

Вселенная из ничего

Итак, давайте представим один кубический метр в виде ящика, заполненного конфетами, с условием, что в одном кубическом метре помещается 1000 конфет. Но что получится, если этот кубический метр станет больше в 10 раз? Ответ, кажется, прост внутри по-прежнему будет 1000 конфет. Но из-за того, что объем вырос в тысячу раз, на один кубический метр будет приходиться только одна конфета. Это кажется логичным, однако у реальности свои правила: в одном кубическом метре содержится постоянно расширяющийся вакуум.

В какой-то момент его объем становится в тысячу раз больше изначального, после чего вакуум распадается. В результате плотность энергии внутри одного воображаемого ящика такая же, как и до расширения вакуум не изменился, хотя наш ящик увеличился в 10 раз. Похоже на какую-то магию, не так ли? Как объясняет сам Линде, когда Вселенная расширяется в постоянном вакууме, энергия материи экспоненциально возрастает, в отличие от энергии гравитации. В результате вакуум распадается высвобождая «1000 конфет» протонов, электронов и других частиц, а их количество становится пропорциональным объему Вселенной.

Таким образом, если экспоненциальный рост продолжается, возрастает и количество частиц. Постоянное расширение, между тем, не говорит нам ни слова о форме Вселенной. Хотя нам с вами на самом деле абсолютно все равно какой она формы, ведь с позиции наблюдателя Вселенная кажется плоской. Именно так в более-менее упрощенном изложении выглядит теория инфляционной Вселенной, впервые выдвинутая Аланом Гутом, американским физиком и космологом в 1981 году. Примечательно, что в конце научной работы Гут пишет примерно следующее:

Существует небольшая проблема, которая заключается в том, что распад вакуума процесс, необходимый для появления материи очень похож на чан с кипящей водой. А как выглядит кипящая вода? Правильно пузырек здесь, пузырек там и так далее.

Гут также утверждает, что эти пузырьки сталкиваются в кипящей Вселенной и делают все процессы, в ней происходящие, хаотичными и… бесполезными. Но как это может быть? Попытки Гута найти ответ на этот вопрос привлекли внимание других ученых. В результате в свет вышло сразу две работы первая, написанная Аланом Гутом в соавторстве с Эриком Вайнбергом в 1981 году, а вторая и есть та самая работа Стивена Хокинга в соавторстве с Томасом Хертогом.

Примечательно, что обе статьи пришли к одному и тому же выводу теория инфляционной Вселенной не состоятельна. Однако Гут связался с Андреем Линде, в результате чего профессор Стэндфордского университета создал новую модель инфляционной Вселенной, за что был отмечен премией имени Георгия Гамова. Но при чем тут Мультивселенная?

Не исключено, что после смерти наше сознание переходит в альтернативную вселенную. Подробнее читайте в материале моего коллеги Рамиса Ганиева

Линде считает, что наша Вселенная похожа на балерину, которая перестав вращаться раскинула руки в разные стороны и замерла на месте. Это, безусловно, кажется невозможным, так как нарушает все известные законы физики. Однако использование новой модели инфляционной Вселенной позволяет многое узнать о Вселенной. О том, кто и почему впервые выдвинул теорию Мультивселенной, читайте в нашем материале.

Что такое Мультивселенная?

Вот мы и подошли к самому интересному почему спикер Geek Picnic 2020 Андрей Линде, а вместе с ним и писатель-фантаст Йен Макдональд, считает, что мы живем в Мультивселенной? Профессор Стэндфордского университета полагает, что Мультивселенная является ответом на вопрос о том… какого цвета наша Вселенная. Если она черная, то это необходимо доказать, точно так же, как если бы мы считали, что ее цвет белый или желтый. Помните чан с бурлящей водой? Представьте, что если наша Вселенная белого цвета, а профессор Линде считает именно так, другие пузырьки могут быть черными, красными, желтыми, синими, зелеными и так далее. А значит, мы живем в Мультивселенной.

По мнению профессора, находясь в белой области пространства (белой Вселенной) мы не видим другие ее области (красные, фиолетовые, коричневые и др). В свою очередь, в каждой Вселенной должен быть наблюдатель, который попытается объяснить почему его Вселенная, например, красная. Таким образом, мы просто не можем исключить возможность существования красной, желтой, синей, голубой и прочих вселенных.

И если все вышеперечисленное кажется вам не достаточно головокружительным, представьте, что Россия это единственная страна, о существовании которой мы знаем. В попытках понять, почему Россия устроена так, как устроена, ученые будут искать ответы на вопросы о ее природе и происхождении. Ровно то же самое будут делать ученые из Китая, Великобритании, Индии, США и любой другой страны. Главное условие в этом примере звучит так жители разных стран не знают о существовании друг друга. Так и Мультивселенная находясь в белой вселенной мы не знаем, что существуют, например, красные, черные и зеленые.

Мы так мало знаем о Вселенной, что не можем исключить того, что она может быть голограммой

Возвращаясь к Началу начал Большому взрыву, Линде сравнивает рождение Вселенной из ничего (в результате распада вакуума) с разными состоянии одного вещества Н2О. Вода, как известно, может находиться в трех состояниях жидком, газообразном (пар, туман) и твердом (снег, лед, град), а значит и сам вакуум, породивший Вселенную, может иметь разные состояния. Из этого, как вы, вероятно, уже поняли и следует вывод о множественности миров.

Говоря о Мультивселенной важно понимать, что какой бы удивительной, непонятной, хаотичной и местами безумной не казалась нам эта теория, с точки зрения физики существование Мультивселенной возможно. Отчасти и по этой причине тоже ученые работают над «теорией всего» теорией, которая смогла бы в полной мере ответить на все вопросы современной физики, включая существование Мультивселенной. По мнению профессора Линде, ближе всего подобрались физики, изучающие теорию струн. Но этоуже совсем другая история.

Вам будет интересно: Обнаружен квадриллион способов создания нашей Вселенной в теории струн

Реальность или фантастика?

Так как человечество находится в самом начале пути познания себя, а следом и Вселенной, мы должны проверять даже самые безумные теории. Все потому, что вопросов сегодня намного больше чем ответов, а истина зачастую скрывается там, куда мы боимся заглянуть. Вот почему научная фантастика является отличным мысленным экспериментом, который, возможно, поможет нам лучше понять Вселенную.

Выступая на Geek Picnic Online 2020 фантаст Йен Макдональд, автор таких произведений как «Бразилья», «Волчья Луна», «Дом дервиша» и др., рассказал о том, почему считает, что мы живем в Мультивселенной. По мнению писателя, сама идея Мультивселенной актуальна для мира, в котором мы живем сегодня. Слово «Мультивселенная» содержит в себе множество понятий и мы просто не можем выбрать все и сразу. Каждый, как утверждает Макдональд, выбирает для себя что-то определенное, например, спорт, научную фантастику или моду. И это одновременно хорошо и плохо.

На фото писатель-фантаст Иен Макдональд

Нам легче объединяться и формировать сообщества, но в то же время, наша жизнь запечатывается в этих частных вселенных, и мы не знаем, что происходит вне их. В социальном, культурном, политическом и экономическом плане мы живем в отдельных параллельных мирах, которые иногда разделяют общие пространства (например, города, улицы, общественные пространства)

Йен Макдональд, Geek Picnic Online 2020

Согласитесь, развивая мысль Макдональда мы рано или поздно придем к размышлениям физиков-теоретиков об устройстве Вселенной. А также, безусловно, и о нашем обществе, о чем себе вдоволь позволил поразмышлять Макдональд в своих произведениях.

Как вы думаете, существует ли Мультивселенная и почему? Ответ будем ждать в комментариях к этой статье, а также в нашем Telegram-чате

Что касается теоретической физики, то в упоминающейся выше работе Хокинга и Хертога исследователи опираются на идею, разработанную еще в 1980-х, известную под названием «Голографическая Вселенная», которая предполагает, что Вселенную можно рассматривать как голограмму и что трехмерная реальность может быть математически свернута только в два измерения (указаны именно два измерения. Это сделано для того, чтобы облегчить вычисления). В результате исследователям удалось навести хоть какой-то порядок в обширной, непостижимой и не побоюсь этого слова безумной теории Мультивселенной.

Кипящие пузырьки о которых говорил Линде можно представить как карманные вселенные (о чем говорится в начале статье) с той лишь разницей, что в этой модели вселенных меньше и они обладают определенными фундаментальными качествами, что значительно облегчает их анализ. Важно понимать, что работа выдающегося британского физика-теоритика (речь о Стивене Хокинге) и его коллег не сводится к единой, уникальной Вселенной, однако их открытия предполагают значительное сокращение Мультивселенной до гораздо меньшего диапазона возможных вселенных. Это означает, что вместо 1000 конфет в воображаемом ящике, физики рассматривают 10.

Возможно, существуют миры, в которых нас с вами не существует

Газета The Washington Post в статье посвященной работе Хокинга и Хертога приводит слова космолога из университета Северной Каролины Кэти Мак о том, что предложенная модель еще не полностью разработана. «Это скорее упрощенная версия чего-то, чтобы просто посмотреть и попытаться понять что происходит» считает Мак. Выходит, совсем неудивительно, что последняя работа Хокинга зависит от концепций, до сих пор не получивших широкого признания и новейших математических инструментов.

Это интересно: Стандартная модель: удивительная теория почти всего

Важно также понимать, что эта работа не является решением всех проблем во Вселенной. Безусловно, она интригует, захватывает и заставляет нас мыслить непривычными категориями. Теория Мультивселенной это потенциальный путь, по которому можно идти даже несмотря на то, что ученые понятия не имеют, куда и к чему их это приведет. «Стивен Хокинг был человеком», — говорит Линде. «Он не был гением, который ежедневно говорит исключительно правильные вещи и боролся с теми же научными проблемами, с которыми борются все физики».

Ну а нам с вами остается попробовать хоть немного понять теорию Мультивселенной и ждать новых, революционных открытий в области теоретической физики. Надеюсь, это произойдет уже очень скоро. А вы?

Подробнее..

В недрах звезд могут существовать странные формы жизни

04.09.2020 00:07:55 | Автор: admin

Возможно, Вселенная полна жизни, просто мы ее не видим

Когда ученые ищут жизнь во Вселенной, они, как правило, обращают внимание на конкретные признаки, в соответсвии с имеющимися данными: в большинстве случаев исследователи ищут подобную Земле планету, которая вращается по орбите в зоне обитаемости родительской звезды; еще одним немаловажным признаком жизни считается наличие на планете воды в жидкой фазе. Но что, если наша Вселенная кишит многообразием форм и видов живых существ, существование которых мы едва ли можем себе представить? Согласно работе, опубликованной в журнале Letters in High Energy Physics некоторые формы жизни существуют в самых негостеприимных местах Земли, а значит вполне могут быть распространенным явлением во Вселенной. Авторы исследования утверждают, что не могут исключить существование процветающих видов живых существ в недрах звезд.

Космическая струна гипотетически существующий реликтовый астрономический объект, представляющий собой одномерную складку пространства-времени.

Космические струны

Как показал анализ, проведенный физиками Луисом Анчордоки и Евгением Чудновским из Городского университета Нью-Йорка, существование некоторых видов живых существ возможно даже в самых экстремальных условиях. Все зависит от того, что мы понимаем под существованием. Если главное это возможность кодировать знания, а также способность носителей информации к самовоспроизводству и самоуничтожению, то гипотетически существующие магнитные монополи, нанизанные на космические нити словно космические ожерелья, могут являться основой жизни в недрах звезд, подобно тому, как ДНК и РНК лежат в начале всех живых существ на Земле.

Издание ScienceAlert приводит слова соавтора исследования Евгения Чудновского: «информация, хранящаяся в РНК (или ДНК), кодирует механизм саморепликации. Как мы знаем сегодня, появлению жизни должно было предшествовать массовое образование случайных последовательностей РНК. Это продолжалось ровно до тех пор, пока не была сформирована последовательность, способная к самовоспроизводству. Мы полагаем, что подобный процесс мог бы происходить и с «ожерельями» в недрах звезд.»

Магнитный монополь гипотетическая элементарная частица, обладающая ненулевым магнитным зарядом точечный источник радиального магнитного поля. Магнитный заряд является источником статического магнитного поля точно так же, как электрический заряд является источником статического электрического поля.

Предполагается, что струны и монополи возникли в ранней Вселенной, в тот момент, когда ее температура начала снижаться (вскоре после Большого взрыва). Этот своеобразный бульон частиц кварк-глюонной плазмы, наполняющей Вселенную, подвергся нарушающему симметрию сегментному переходу и конденсировался в материю, как пар конденсируется в жидкость.

Вселенная очень странная

Отмечу, несмотря на то, что исследователям еще только предстоит обнаружить космические струны (одномерные линейные объекты) или Монополи (элементарные частицы с одним магнитным полюсом), они уже много думали о поведении этих гипотетических объектов. Так, в 1988 году Чудновский и его коллега, физик-теоретик Александр Виленкин из университета Тафтса, предсказали, что космические струны могут быть буквально захвачены звездами. В недрах звезд турбулентность растягивала струны до тех пор, пока они не формировали целое сообщество струн.

Ядерная жизнь

Одномерное ожерелье вряд ли будет нести в себе информацию. Но более сложные структуры потенциально могли бы так как для воспроизводства необходимо выживать довольно длительный период времени, питаясь энергией синтеза, генерируемой звездой. По сравнению со временем жизни звезды, ее время жизни искра света в темноте. Важно, что прежде чем угаснуть такая искра успевает произвести больше искр, таким образом обеспечивая долгую продолжительность жизни вида», — пишут авторы научной работы.

Чтобы всегда быть в курсе последних новостей из мира популярной науки и высоких технологий, подписывайтесь на наш канал в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте.

Сложность, возникающая в результате мутаций и естественного отбора, возрастает с увеличением числа прошлых поколений. Следовательно, если продолжительность жизни самовоспроизводящихся ядерных видов так же коротка, как продолжительность жизни многих нестабильных составных ядерных объектов, они могут быстро эволюционировать в направлении огромной сложности. Теоретически нельзя исключить, что подобная форма жизни может с легкостью развить интеллект и даже, возможно, критически мыслить, считает Чудновский.

Физики утверждают, что в звездах может существовать жизнь

То, как будет выглядеть такой вид, — это праздник для воображения. Но нам не обязательно знать, как они выглядят, чтобы искать признаки их присутствия. Поскольку такие организмы будут использовать часть энергии своей звезды-хозяина для выживания и размножения, звезды, которые, похоже, охлаждаются быстрее, чем могут объяснить звездные модели, могут быть хозяевами того, что исследователи называют «ядерной жизнью».

«Поскольку они будут развиваться очень быстро, они могли бы найти способ исследовать космос за пределами своей звезды, как это сделали мы», — сказал Чудновский ScienceAlert. — Они могли бы установить связь и путешествовать между звездами. Может быть, нам стоит поискать их присутствие в космосе.»

Это интересно: Почему наша Вселенная такая странная и существуют ли законы физики?

Безусловно, это крайне спекуляционная тема, но подобные идеи могут быть отличным способом для свершения новых открытий. Именно по этой причине авторы научной работы планируют продолжить свое направление исследований, разработав модели космических ожерелий в звездах. Возможно, это не приведет нас к контакту со сверкающими звездными пришельцами, но даже если их е существует вовсе, это может дать нам лучшее понимание космических струн и монополей.

Подробнее..

Физики обнаружили слияние черных дыр, которые не должны существовать

05.09.2020 20:03:19 | Автор: admin

Моделирование слияния черных дыр выглядит так

Семь миллиардов лет назад, где-то на краю Вселенной, произошло столкновение двух гигантских темных объектов. Это событие проливает свет на невидимый процесс ускоряющегося расширения Вселенной: вибрируя в пространстве-времени две сверхмассивные черные дыры произвели громкий, резко обрывающийся звук. Сигнал длился десятую долю секунды, однако этого оказалось достаточно, чтобы детекторы интерферометрической гравитационно-волновой обсерватории LIGO и интерферометрической обсерватории VIRGO зафиксировали его. Как пишут авторы новых исследований, короткий сигнал из далекой галактики вызывает много вопросов, особенно в областях, касающихся формирования и эволюции черных дыр. Одна, а возможно обе столкнувшиеся дыры были слишком массивными и не могли образоваться в результате коллапса нейтронных звезд. Более того, слияние породило еще более крупную черную дыру, чья масса в 142 раза превосходит массу Солнца и, согласно стандартным моделям, не должна существовать. Но как такое возможно?

Аномальные черные дыры

Предсказанные Альбертом Эйнштейном черные дыры это массивные объекты, гравитационное притяжение которых настолько велико, что даже фотоны света не могут их покинуть. Существование этих таинственных объектов удалось доказать в 2015 году, после того, как обсерватории LIGO и VIRGO зафиксировали гравитационные волны — рябь пространства-времени, появившаяся в результате столкновения двух сверхмассивных черных дыр. Подробнее об открытии, которое принесло основателям LIGO Нобелевскую премию по физике читайте в материале моего коллеги Артема Сутягина.

Большинство известных черных дыр это мертвые массивные звезды, которые коллапсировали в объекты в несколько раз массивнее Солнца. Но внутри галактик находятся черные дыры в миллионы или миллиарды раз более массивные, чем наша родная звезда. Как эти объекты смогли вырасти до таких размеров извечная загадка астрономии.

В конце своей жизни, когда у звезд заканчивается ядерное топливо и они больше не противостоят собственной гравитации, они разрушаются (коллапсируют). Маломассивные звезды, включая наше Солнце, в конечном итоге становятся слабыми звездными призраками, известными как "белые карлики". Звезды, масса которых превышает массу Солнца примерно в 8 раз, становятся невероятно плотными и маленькими объектами, называемыми нейтронными звездами. И по-настоящему массивные звезды с массой более 20 солнечных масс при рождении становятся черными дырами, с конечными массами от нескольких до примерно 40 солнечных масс.

До недавнего времени у исследователей было не так много свидетельств существования черных дыр среднего и, скажем так, промежуточных размеров, чья масса превосходит солнечную в 100 и 100 000 раз. Черная дыра, созданная в результате слияния настолько массивных объектов, является первым убедительным примером существования этого «недостающего звена» астрономии.

На изображении рябь пространства-времени и короткий звуковой сигнал

Издание The New York Times приводит слова сразу нескольких ученых, которые не принимали участия в исследованиях. Так, астрофизик из Северо-Западного университета Вики Калорега, в электронном письме написала следующее: «Это первое и единственное надежное измерение массы черной дыры среднего размера на момент ее рождения. Теперь мы достоверно знаем, по крайней мере, один способ, которым эти объекты могут образовываться — путем слияния других черных дыр.»

Чтобы всегда быть в курсе последних новостей из мира популярной науки и высоких технологий, подписывайтесь на наш новостной канал в Telegram.

По мнению Сергея Клименко, физика из университета Флориды, открытие также является важной вехой в гравитационно-волновой астрономии. Эти объекты ученый искал на протяжении последних 15 лет. Исследователь отметил, что астрономы, возможно, получили представление о процессе, с помощью которого Вселенная «строит» черные дыры в темноте, превращая ничтожно малые объекты в грохочущих левиафанов.

Дэниел Хольц, физик-теоретик из Чикагского университета и член команды LIGO, назвал новые работы «первым по-настоящему удивительным открытием LIGO/Virgo.» Ранее обнаруженные другие бинарные системы, по мнению ученого, достаточно хорошо вписываются в ожидания. Но в этом случае настолько массивные черные дыры не должны существовать!

Международная группа исследователей, входящих в состав коллабораций LIGO и Virgo, сообщила о своих выводах в двух статьях, опубликованных в Physical Review Letters и Astrophysical Journal Letters. Согласно полученным результатам, события разворачивались на почти невообразимом расстоянии от Земли 17 миллиардов световых лет. Одна черная дыра масса которой в 85 раз превосходит массу Солнца, и вторая, чья масса равна 66 массам нашей родной звезды, слились воедино в результате столкновения, породив черную дыру в 142 раза массивнее Солнца.

Как отмечают авторы исследования, этот процесс слияния может быть важным ключом к происхождению более массивной из двух черных дыр. Предположительно, черная дыра GW190521 имела массу в 85 Солнц, и, согласно стандартной астрофизической логике, не должна была существовать. Черные дыры с массой от 50 до 120 солнц не могут образоваться, по крайней мере, из умирающей звезды именно об этом свидетельствуют история и расчеты.

Тайны массивных звезд

Исследователи уже довольно давно предполагают, что нечто странное происходит с очень, очень массивными звездами, возможно, с теми, чьи начальные массы находятся между 130 и 250 солнечными массами, чьи ядра становятся действительно горячими (около миллиарда градусов Кельвина) в конце звездной эволюции. Свет, отражающийся внутри этих звезд настолько энергичен, что может трансформироваться в пары электронов и позитронов (позитроны являются антиматериальными двойниками электрона — они почти идентичны, но имеют противоположный заряд).

Черные дыры «средних размеров» это недостающее звено астрономии

Это, в свою очередь, делает звезду нестабильной: давление внезапно падает, центр звезды сжимается и нагревается и беглый ядерный синтез заставляет всю звезду взорваться в яркой сверхновой «парной нестабильности», не оставляя после себя никаких остатков.

Это интересно: Черные дыры можно использовать в качестве источника бесконечной энергии

Как отмечает доктор Хольц, большая черная дыра находится прямо посередине области, где черным дырам не место. Природа, похоже, проигнорировала все наши тщательные теоретические расчеты, утверждая, что черных дыр такой массы не существует. Он добавил: «подобные открытия одновременно обескураживают и пробуждают интерес. С одной стороны, одно из наших главных убеждений оказалось ошибочным. С другой стороны, в этом есть что-то новое и неожиданное, и теперь гонка продолжается, ведь нужно попытаться выяснить, что происходит.

По мнению д-ра Хольца и других ученых, наиболее интригующей является вероятность того, что слишком массивная черная дыра GW190521 была образована двумя меньшими черными дырами, которые столкнулись и слились. В этом случае слияние, наблюдаемое в июне 2020 года, было бы событием второго или даже третьего поколения, одним из иерархической серии слияний черных дыр, которые в конечном итоге приводят к сверхмассивным черным дырам. Некоторые астрофизики считают, что подобные слияния, скорее всего, происходят вблизи центров галактик, где сверхмассивные черные дыры создают закрученные спирали газа и других объектов, в которых могут собираться и размножаться тысячи более мелких черных дыр.

Подробнее..

Обнаружено новое доказательство теории струн

21.09.2020 02:11:02 | Автор: admin

Всего несколько лет назад казалось, что теория струн этоновая теория всего. Но сегодня струнная вселенная порождает больше вопросов, чем ответов

Теория струн призвана объединить все наши знания о Вселеной и объяснить ее. Когда она появилась, то буквально очаровывала своей кажущейся простотой и лаконичностью, объединяя то, что раньше казалось невозможным. Однако с течением времени стало понятно, что эта красивая теория только кажется простой и, к великому сожалению многих исследователей, порождает куда больше вопросов, чем ответов. Эта теория описывает одномерные, вибрирующие волокнистые объекты, называемые «струнами», которые распространяются в пространстве-времени и взаимодействуют друг с другом. Несмотря на то, что сегодня популярностью среди физиков пользуются другие теории, ученые постепенно, кусочек за кусочком, продолжают открывать и расшифровывать фундаментальные струны физической Вселенной с помощью математических моделей. Так, согласно результатам нового исследования, математики из университета штата Юта обнаружили новое доказательства теории струн.

В теории струн мироздание похоже на невероятно малые, вибрирующие нити энергии, способные извиваться, растягиваться и сжиматься. Физики-теоретики считают, что все сущее состоит из струн, однако проверить это экспериментальными методами до сих пор никому не удалось.

Струны Вселенной

Искусно сочетая в себе идеи квантовой механики и общей теории относительности (ОТО), струнная теория, как полагают физики, должна построить будущую теорию гравитации. Однако сегодня ученые все больше критикуют теорию струн и все реже уделяют ей внимание из-за огромного количества вопросов, которые она порождает. Однако согласно результатам нового исследования, опубликованного в журнале Letters in Mathematical Physics, теория струн все же, имеет право на существование.

Математики из университета штата Юта и Сент-Луисского университета опубликовали результаты математических расчетов о двух ветвях теории струн. В ходе работы исследователи изучили специальное семейство компактных K3-поверхностей связанных комплексных двумерных поверхностей. Они представляют собой важные геометрические инструменты для понимания симметрий физических теорий.

Пример поперечного сечения поверхности K3 в 3-х мерном пространстве, используемой математиками для изучения струнных двойственностей между F-теорией и гетеротической теорией в восьми измерениях.

Напомним, что одной из важных особенностей теории струн является то, что она требует дополнительных измерений пространства-времени для математической согласованности. Однако далеко не каждый способ обработки этих дополнительных измерений, также называемый «компактификацией», дает модель с правильными свойствами для описания природы. Для так называемой восьмимерной компактификации модели теории струн, называемой F-теорией, дополнительные измерения должны иметь форму поверхности K3.

В новой работе исследователи рассматривали двойственность двух видов теории струн F-теории и гетеротической в восьми измерениях.

Теории струн быть

Команда нашла четыре уникальных способа разрезать поверхности K3 особенно полезным способом, с помощью якобианских эллиптических расслоений комплексов из нескольких волокон, по форме напоминающих батон или бублик. Исследователи построили явные уравнения для каждого из этих расслоений и показали, что концепции теории струн в реальном физическом мире имеют право на существование.

Пример К3 поверхности

«Вы можете думать об этом семействе поверхностей как о буханке хлеба, а о каждой фибрации как о «ломтике» этой буханки», пишут исследователи. Изучая последовательность «ломтиков», мы можем визуализировать и лучше понять всю буханку. По мнению авторов статьи, важной частью этого исследования является выявление определенных геометрических строительных блоков, называемых «делителями», внутри каждой поверхности K3.

Вам будет интересно: Восход и закат теории струн

Часы кропотливой работы, в результате позволили математикам доказать теоремы каждого из четырех расслоений, а затем протолкнуть каждую теорему через сложные алгебраические формулы. Издание SciTechDaily приводит слова авторов исследования о том, что для последней части этого процесса ученые использовали программное обеспечение Maple и специализированный пакет дифференциальной геометрии, который оптимизировал вычислительные усилия.

Наша Вселенная очень странная и возможно состоит из струн

Отметим, что начиная с 1980-х гг., теория струн породила целых пять собственных версий. И хотя каждая из них построена на струнах и дополнительных измерениях (все пять версий объединены в общую теорию суперструн, о чем подробно писал мой коллега Илья Хель), в деталях эти версии довольно сильно расходились.

Еще больше увлекательных статей о нашей удивительной Вселенной читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте.

Парадокс заключается в том, что все пять версий на сегодняшний день можно назвать одинаково верными. Однако доказать наличие струн экспериментальным путем так никому и не удалось. И все же, несмотря на весь скептицизм и критику теории струн, новая работа доказывает ее право на существование. Таким образом, нельзя исключать теорию струн из списка потенциальных кндидатов Теории Всего универсальной теории, объединяющей все наши знания о мире и Вселенной.

Подробнее..

Категории

Последние комментарии

© 2006-2020, umnikizdes.ru