Русский
Русский
English
Статистика
Реклама

Наука физика

Могут ли законы физики меняться со временем?

22.02.2022 18:04:27 | Автор: admin

Наша Вселенная странное место. Судите сами: мы живем на шаре, который вращается вокруг обычной звезды (коих на просторах космоса не счесть), а наша галактика небольшая и по космическим меркам заурядная. Вокруг нас бесконечная Вселенная, которая расширяется с ускорением. И чтобы хотя бы немного понять как устроен окружающий мир, мы придумали физику науку, которая описывает земные и космические законы, то есть законы Природы. И если Общая теория относительности (ОТО) отлично применима для описания происходящего на Земле, то с космосом все не так просто. В 2010 году исследователи обнаружили, что законы физики на самом деле могут медленно меняться со временем, значительно усложняя наше понимание Вселенной. А недавно команда астрофизиков предложила еще один ответ на вопрос о том, различны ли законы физики в разных частях космоса.

Постоянная тонкой структуры

В прошлом году международная команда физиков проанализировала свет, исходящий от далеких звезд и предположила, что так называемая постоянная тонкой структуры значение которой, как и значение скорости света, считалось неизменным изменилась за миллиарды лет. По мнению исследователей времена меняются, как и фундаментальные константы физики.

Напомним, что постоянная тонкой структуры представляет собой объединение скорости света, заряда электрона и квантово-механического числа, известного как постоянная Планка. Иными словами это физическая константа, описывающая электромагнитное взаимодействие. Так, все три ее составляющие обеспечивают меру присущей силы электромагнитных взаимодействий. Например таких, как те, что связывают электрон с атомом.

Поглощение света атомом регулируется взаимодействием электрон-атом.

Значение константы составляет примерно 1/137, и ученые полагают, что так было с незапамятных времен. Например, в ранней Вселенной законы гравитации Ньютона о том, что вся материя во Вселенной притягивает другую материю с силой, прямо пропорциональной произведению их масс и обратно пропорциональной квадрату расстояния между их центрами возможно, еще не были верны.

Это интересно: Наша Вселенная родилась в лаборатории?

В работе описывается, как одна из предполагаемых фундаментальных констант природы в конце концов оказывается не постоянной. «Магическое число» или константа тонкой структуры (обозначается греческой буквой ) по-видимому, действительно меняется по всей Вселенной.

Постоянная не постоянна. Почему?

Как сообщает PopMech со ссылкой на исследование, после измерения примерно в 300 отдаленных галактиках появилась последовательность: то самое магическое число, которое говорит нам о силе электромагнетизма и которое на самом деле одинаково не везде.

Выводы исследователей основаны на новых измерениях, проведенных с помощью Очень большого телескопа (VLT) в Чили, наряду с предыдущими измерениями с помощью крупнейших в мире оптических телескопов в обсерватории Кека на Гавайях.

комплекс из четырёх отдельных 8,2-метровых и четырёх вспомогательных 1,8-м оптических телескопов, объединённых в одну систему.

Постоянная тонкой структуры изменяется лишь на незначительную величину примерно на одну часть из 100 000 на большей части наблюдаемой Вселенной. Но может быть и так, что за пределами нашего наблюдаемого горизонта происходят гораздо большие изменения, объясняют физики.

Таким образом ответ на вопрос о том, сохраняется ли значение постоянной тонкой структуры во времени, зависит от поведения электромагнитных сил на ранних этапах существования Вселенной. Авторы статьи признают собственный скептицизм и с осторожностью описывают полученные выводы. Они предупреждают, что их работа является лишь первым шагом в формировании новой теории физики и требует дополнительных исследований.

Не пропустите: Действительно ли мир стоит на пороге открытия новой физики?

«Конечно, это только первый шаг. Но все же представить, что законы физики могут со временем изменяться напоминает о том, что Вселенная место еще более странное, чем мы можем себе представить,» пишут исследователи.

Читайте также: Ученые из ЦЕРН стоят на пороге открытия новой физики

Рождение новой физики

Интересно, что последствия открытия могут оказать большое влияние на современную теорию. Если законы физики окажутся просто «локальными подзаконными актами», в то время как наша наблюдаемая часть Вселенной благоприятствует существованию жизни и людей, могут существовать другие, гораздо более отдаленные регионы, где иные законы препятствуют образованию жизни, по крайней мере, в том виде, в каком мы ее знаем.

Но и это еще не самое интересное в данной статье физики сравнивают Вселенную с системой машинного обучения: «Точно так же, как мы учим машины выполнять функции с течением времени, то есть учиться, законы Вселенной по сути являются алгоритмом», отмечают ученые.

Возможно, наш мир был сконструирован подобно игре Sims развлечения ради.

Мы понимаем законы физики так, как наблюдаем их, поэтому первоначальный физический закон был бы невероятно простым и способным к обучению и развитию. Также нельзя исключить, что Вселенная началась не с Большого взрыва, а с простого взаимодействия между частицами, объясняют физики.

Больше по теме: Симуляция или реальность? Физики полагают, что Вселенная способна к самообучению

Но если Вселенная и правда действует с помощью набора законов, которые, будучи изначально простыми, являются автодидактическими (самообучающимися) и, следовательно, способны развиваться с течением времени, то мы никогда не сможем создать Теорию всего.

В конечном итоге понимание их существования может помочь нам понять причину, по которой существуем мы.

Конечно, все это лишь домыслы, основанные на теоретической физике. И к данной работе необходимо относиться со здоровым скептицизмом. Ведь главный ее вывод звучит следующим образом возможно, мы живем внутри гигантского суперкомпьютера, который способен к самообучению. А как вы думаете, может ли вся наша жизнь оказаться компьютерной симуляцией? Ответ будем ждать здесь, а также в комментариях к этой статье.

Подробнее..

Атомные часы доказали гравитационное замедление времени

24.02.2022 22:20:28 | Автор: admin

Атомные часы демонстрируют как устроена Вселенная

Гравитация является самой главной силой во Вселенной. Именно она удерживает планеты на орбите вокруг Солнца. Она же удерживает Луну на земной орбите и создает звезды и планеты, притягивая материал, из которого они состоят. Но что особенно интересно, так это способность гравитации притягивать свет. Этот принцип открыл Альберт Эйнштейн, описав гравитацию как кривую в пространстве она огибает объект, например звезду или планету. И если поблизости находится другой объект, он также втягивается в кривую. Согласно Общей теории относительности (ОТО), время движется медленнее вблизи массивных объектов, так как их гравитационная сила изгибает пространство-время, которые неразрывно связаны. Это означает, что большие массы деформируют ткань пространства-времени своим огромным гравитационным влиянием. Недавно в научном журнале Nature вышла интересная статья. Ее авторы утверждают, что атомные часы, разделенные всего несколькими сантиметрами, измеряют разные скорости времени как и предсказывал Эйнштейн.

Универсальный закон тяготения Ньютона, сформулированный им в 1687 году, стал первой работой по объединению фундаментальных сил в физике.

Как устроена Вселенная?

  • Начнем с того, что в основе современной физики лежат четыре фундаментальных силы природы:

  • Электромагнетизм (физическое взаимодействие, которое происходит между электрически заряженными частицами);
  • Слабое ядерное взаимодействие (физическое взаимодействие распада атомных ядер);
  • Сильное ядерное взаимодействие (физическое взаимодействие в котором участвуют кварки и глюоны, а также составленные из них частицы адроны);
  • Гравитация (универсальное фундаментальное взаимодействие между материальными телами, обладающими массой. При этом именно гравитация является самой слабой из всех существующих сил).

Несмотря на то, что гравитация является самой слабой из четырех сил, именно она определяет, как устроена Вселенная в широком масштабе, на уровне планет и галактик. По этой причине гравитация может показаться универсальной силой, но на деле это не так.

Гравитация оказывает влияние на ткань пространства-времени.

Согласно ОТО, сформулированной Эйнштейном в 1916 году, гравитация не является свойством отдельных тел, речь идет о Вселенной в целом.

Выходит, ОТО описывает гравитацию не просто как силу, но как геометрию. Гравитация по Эйнштейну это следствие того, как материя искажает пространство-время. Знаменитый физик также предполагал существование гравитационных волн, ведь массивные объекты не только искажают пространство-время, они создают в нем рябь. Это происходит когда два объекта, например черные дыры, сталкиваются друг с другом.

Открытие гравитационных состоялось в 2016 году. Подробнее об этом научном прорыве рассказывал мой коллега Артем Сутягин, рекомендую к прочтению.

Гравитация и замедление времени

И все же принципы теории относительности не сочетаются с квантовой механикой, которая рассматривает Вселенную на уровне взаимодействия элементарных частиц. Несовместимость этих теорий одна из важнейших проблем современной науки. Хотя небольшая лазейка у физиков все же есть.

Чтобы приблизиться к созданию Теории всего и разобраться в устройстве Вселенной, исследователи решили обратить внимание на гравитационное замедление времени. Этот удивительный феномен также не противоречит постулатам квантовой механики время под действием сильной гравитации действительно меняет свой ход.

Гравитационное замедление времени это физическое явление, которое заключается в изменении темпа хода часов в гравитационном потенциале

Атомные часы наиболее точный на данный момент инструмент для измерения времени.

Ранее это удалось доказать измерив замедление времени двух атомных часов, расположенных друг над другом на расстоянии всего 33 см. Даже на таком небольшом расстоянии часы смогли обнаружить заметные изменения гравитации. Однако наличие двух отдельных атомных часов, расположенных близко друг к другу, физически невозможно. По этой причине авторам исследования пришлось разработать новые часы специально для эксперимента. Но что представляют собой эти приборы?

Хотите всегда быть в курсе последних новостей из мира науки и технологий? Подписывайтесь на наш новостной канал в Telegram так вы точно не пропустите ничего интересного!

Атомные часы: как узнать точное время?

Атомные часы самый точный прибор для измерения времени. Эти устройства состоят из нескольких частей, а их электроника ответственна за стабильность работы и точность механизма. Несмотря на то, что атомные часы устройства сложные, изготовить их и использовать могут в любой стране мира. Сами по себе эти приборы не тяжелые и небольшие (а определение секунды основано на колебаниях атома цезия).

В ходе нового исследования, опубликованного журнале Nature, ученые уменьшили размер атомных часов. Это стало возможным благодаря замене пружин и шестеренок на специальный механизм, который позволил определять частоту электромагнитного излучения атомов цезия с помощью воздействия на частицы лазерным лучом.

Новые атомные часы отстают всего на одну секунду каждые 300 миллиардов лет

Не пропустите: Время на квантовом уровне течет иначе. Но как? И что это означает для физики?

В конечном итоге физики превратили атомные часы в набор из 15 независимых измерительных приборов, удаленных друг от друга на расстоянии шести микрометров. С помощью нового устройства исследователи смогли контролировать перемещение частиц и «послойно» замерить частоту колебаний облака из нескольких сотен тысяч атомов стронция-87, заключенных внутри специальной световой ловушки.

Наиболее важным и захватывающим результатом нашей работы является потенциальная возможность связать квантовую физику с гравитацией, так как частицы распределены в разных местах в искривленном пространстве-времени, объясняет один из авторов нового исследования Йе Цзюнь из Национального института стандартов и технологий США.

Сопоставив полученные данные авторы работы пришли к выводу, что гравитационное замедление времени можно применить к микрообъектам, которые подчиняются законам квантовой механики. Результаты эксперимента также показали, что не существует никаких препятствий для создания новых часов, которые будут работать в 50 раз точнее всех имеющихся на сегодняшний день устройств.

Для измерения гравитационного замедления времени требуются сверхточные часы.

Интересный факт
В мае 2021 года астрономы создали наиболее полную карту темной материи во Вселенной, которая выявила, что гравитация внутри космических пустот не подчиняется теории относительности.

Таким образом, основываясь на одном из заключений Общей теории относительности Эйнштейна (время в присутствии гравитационных полей разной силы и при движении с большой скоростью течет неоднородно), физики наконец смогли доказать существование гравитационного замедления времени. Оказалось, оно не проявляло себя на малых масштабах но оказала влияние на ход часов в полном соответствии с предсказаниями теории относительности.

Вам будет интересно: Физики впервые связали два разных квантовых объекта

Что-то новенькое

Но этот невероятный результат только начало. В будущем физики планируют повысить точность измерений используя атомные часы для наблюдений за тем, как гравитация влияет на работу сложных квантовых систем. Таким образом модернизированные атомные часы позволят добиться более точных данных в будущих исследованиях.

Выходит, нас с вами точно ждут невероятно интересные открытия. Безусловно, ученым предстоит много работы, но при удаче, решимости и постоянном финансировании усовершенствованные атомные часы могли бы проложить путь к разгадке одной из самых больших загадок физики и наконец создать Теорию всего.

Новые сверхточные атомные часы могут почувствовать гравитационные волны

Это интересно: Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?

Интересно и то, что атомные часы можно применять не только для расширения границ известной физики частиц. Их помощь пригодится и астрофизикам в поисках таинственной темной энергии, масса которой превышает массу обычного вещества во Вселенной (в пропорциях 5 к 1).

Благодаря точности измерений, атомные часы могут помочь в картографировании внутреннего строения Земли, измеряя гравитацию с невероятной точностью. Более того, атомные часы ключ к созданию инструментов для изучения тайн физики.

Согласно общей теории относительности, атомные часы на разных высотах в гравитационном поле должны тикать с разной скоростью.

Более того, атомные часы могут служить как микроскопы, позволяя увидеть мельчайшие связи между квантовой механикой и гравитацией, так и телескопами, созданными для наблюдений за самыми удаленными уголками Вселенной.

Больше по теме: Сможет ли телескоп Джеймс Уэбб обнаружить внеземную жизнь?

Недавно в космос был запущен телескоп Джеймс Уэбб. Его создатели отмечают, что открытия, сделанные с помощью астрономического инструмента, позволят узнать какой наша Вселенная была в первые микросекунды после Большого взрыва.

Подробнее..

Наша Вселенная это голограмма? И при чем тут черные дыры?

05.03.2022 16:07:52 | Автор: admin

Мы знаем о гравитации со времен Ньютона, но по-прежнему пытаемся ее понять

Одна из наиболее многообещающих попыток объяснить гравитацию это попытка взглянуть на нее иначе, например, как на что-то вроде голограммы трехмерного эффекта, который появляется на плоской двумерной поверхности. Идея заключается в том, что нам лишь кажется, что мы живем в трехмерной вселенной на самом деле изменений может быть только два. Такой взгляд на мир называется голографическим принципом. Итак, представим, что некоторая удаленная двумерная поверхность содержит все данные, необходимые для полного описания нашего мира, и, как и в голограмме, эти данные проецируются в трех измерениях. Подобно персонажам на экране телевизора, мы живем на плоской поверхности, которая выглядит так, будто у нее есть глубина.

Как понять Вселенную

Безусловно, голографическая Вселенная кажется абсурдом. Но когда физики, исходя из расчетов, предполагают нечто подобное, это означает, что всевозможные фундаментальные физические проблемы например природа черных дыр и согласование гравитации и квантовой механики становятся проще. Если совсем просто, то законы физики имеют больше смысла, когда описаны в двух измерениях, а не в трех.

Однако существуют важные различия. Во-первых, не существует прямых доказательств того, что наша Вселенная является двумерной голограммой. Во-вторых, подобные вычисления не то же самое, что математическое доказательство.

Голограмма это изображение системы, полученное при помощи меньшего количества измерений, способное вместить в себя всю информацию из оригинальной системы.

Больше по теме: Наша Вселенная родилась в лаборатории?

Скорее, это интригующие предположения. Сомнения вызывает также тот факт, что проверить эту теорию экспериментальным путем невозможно. И все же, сама идея того, что наша Вселенная голограмма, возникла из пары парадоксов, которые касаются странной физики черных дыр.

Хранят ли черные дыры информацию?

В 1974 году знаменитый физик-теоретик Стивен Хокинг обнаружил, что черные дыры испускают небольшое количество излучения с течением времени. Когда эта энергия уйдет с горизонта событий внешнего края черной дыры черная дыра должна полностью исчезнуть. Эта идея породила так называемую проблему потери информации в черной дыре.

Долгое время считалось, что физическая информация не может быть уничтожена: все частицы сохраняют свою первоначальную форму, а если они изменяются, то влияют на другие частицы. Таким образом в конце жизненного цикла черной дыры можно определить исходное состояние набора частиц.

Кто знает, быть может наш мир и вся Вселенная это голограмма

Но тут возникает проблема: если черная дыра исчезает, то вся информация, присутствующая в любом поглощенном объекте, по-видимому, исчезает тоже.

В конце ХХ века исследователи предположили, что когда объект оказывается внутри черной дыры, то оставляет после себя своего рода 2D-отпечаток, информация о котором закодирована на горизонте событий. Позже, когда излучение покидает черную дыру, оно улавливает отпечаток этих данных.

Это интересно: Вселенная расширяется быстрее, чем предполагали ученые?

Таким образом информация на самом деле не исчезает бесследно. Проведенные расчеты показали, что хранить информацию можно только на двумерной поверхности черной дыры. И с помощью этой информации можно полностью описать любые, казалось бы, трехмерные объекты внутри нее.

Вся информация, содержащаяся в некой области пространства, может быть представлена как голограмма

Напомним, что черные дыры ведут себя в соответствии с Общей теорией относительности Эйнштейна. Но крошечные частицы за пределами черных дыр играют по правилам Стандартной модели физики элементарных частиц, которая описывает Вселенную в абсолютных мельчайших масштабах.

Чтобы всегда быть в курсе последних новостей из мира науки и высоких технологий, подписывайтесь на наш канал в Telegram. Так вы точно не пропустите ничего интересного!

От черных дыр до всей Вселенной

Взгляд на всю Вселенную как на двумерный объект, который лишь кажется трехмерным, может помочь решить некоторые более серьезные проблемы в теоретической физике. Дело в том, что математика работает вне зависимости от того, идет ли речь о черной дыре, планете или целой Вселенной.

Более того, рассматривая вселенную в двух измерениях, исследователи смогли создать теорию струн широкую структуру, в которой основными строительными блоками Вселенной являются одномерные струны, а не частицы четко согласованной с хорошо установленными законами физики элементарных частиц. Можно даже сказать, что голографический принцип объединил теорию гравитации с теориями физики частиц.

И да, все это все сильно отличается от утверждения о том, что наша Вселенная а не эта странная гипотетическая является голограммой.

математически, Вселенная требует только двух измерений. Все остальное лишь иллюзия

Но несмотря на отсутствие доказательств, голографический принцип предсказывает, что существует предел того, сколько информации может содержать пространство-время, потому что наше кажущееся трехмерным пространство-время кодируется ограниченным количеством 2D-информации.

Читайте также: Ученые приблизились к пониманию того, почему существует Вселенная

Голографическая двойственность также предполагает, что трехмерная вселенная, подобно пространству внутри черных дыр, математически связана с двумерной вселенной. И если математика действительно является языком Вселенной, то когда-нибудь ученые найдут ответы на многочисленные вопросы о том, является ли наш мир симуляцией, частью бесконечной Мультивселенной или чем-то совершенно иным, о чем никто на нашей голубой планете пока не знает.

Подробнее..

Почему W-бозон может перевернуть наши знания о Вселенной?

12.04.2022 16:20:19 | Автор: admin

Ядро атома состоит из протонов и нейтронов. Количество последних может быть разным: от нуля до нескольких десятков.

Что мы знаем о Вселенной, в которой живем? Чтобы хоть немного понять устройство окружающего мира, были разработаны мощные научные инструменты. Такие телескопы как Хаббл и Джеймс Уэбб, что начнет полноценную работу уже в июне 2022 года, в прямом смысле слова открыли нам глаза. Но изучать Вселенную можно и на Земле, например, с помощью ускорителей частиц. Ведь согласно физическим теориям, все вокруг нас (как и мы сами) состоит из невидимых глазу частиц, что работают по своим законам. Общая теория относительности Эйнштейна блестяще описывает нашу повседневную реальность, но когда речь заходит об элементарных частицах, ОТО не работает, а знаменитую Стандартную модель элементарных частиц все чаще называют неполной. Так, согласно результатам нового исследования, частица Wбозон, кажется на 0,1% тяжелее других. И если это действительно так, нас ожидает пересмотр самой успешной научной теории всех времен.

Мы это звездная пыль

Итак, существует две теории объясняющие устройство Вселенной ОТО и квантовая механика. При этом ОТО все чаще получает подтверждения за пределами нашей планеты. Так, ученым удалось поймать гравитационные волны и наблюдать за самыми таинственными обитателями космоса черными дырами.

Как и предсказывал Эйнштейн, сила притяжения огибает свет вокруг этих массивных объектов, а их столкновение порождает гравитационные волны.

Но когда речь заходит о квантовой механике, все становится странным. Например, Вселенная расширяется с ускорением, что противоречит известным законам физики и ученые пока не могут объяснить почему. И пока астрономы наблюдают за звездами, их коллеги дробят материю на атомы.

Из чего состоит атом

Атомы это мельчайшие крупицы, из которых состоит все вокруг. Как однажды сказал астрофизик Лоуренс Краусс, «атомы вашей левой руки пришли от одной взорвавшейся звезды, а атомы правой от другой». Старые звезды погибают, выбрасывая в космос множество элементов, необходимых для появления жизни. Так что мы с вами в каком-то смысле и правда звездная пыль.

Больше по теме: Что квантовая физика может рассказать о природе реальности?

И все же мы не знаем как строительные кирпичики Вселенной взаимодействуют между собой создавая реальность. Это порождает новые вопросы, ответы на которые могут подарить ускорители частиц.

Ускорители частиц

Чтобы понять как фундаментальные строительные блоки Вселенной сочетаются друг с другом, ученые создают новые компьютерные модели. Согласно результатам измерений, полученных с помощью коллайдера частиц в Национальной ускорительной лаборатории Ферми в США, физики кое-что обнаружили. Результаты опубликованы в научном журнале Science.

Ускорители частиц класс устройств для получения заряженных частиц высоких энергий. Принцип их работы довольно прост заряженные частицы ускоряются под действием электрического поля. Первые ускорители появились в 1930-хгг. Этот ускоритель был самым мощным в мире до 2009 года, затем его заменил Большой адронный коллайдер (БАК).

Несмотря на то, что ускоритель Ферми разбил свои последние протоны десять лет назад, физики наблюдали экспериментальное открытие процесса одновременного рождения трех W-бозонов. И после длительного анализа им наконец удалось точно измерить массу этих загадочных частиц.

Ученые заявили, что определили массу W-бозона с точностью 0,01 процента, что вдвое превышает точность предыдущих попыток.

Новое открытие, как сообщают его авторы, может навсегда изменить физику, так как полученные результаты сильно отличаются от прогнозов, основанных на Стандартной модели, разработанной в 1970-х годах. В ней прекрасно все, за исключением темной материи и гравитации что они собой представляют на субатомном уровне остается тайной.

Хотите всегда быть в курсе последних открытий в области квантовой механики? Подписывайтесь на наш канал в Telegram чтобы не пропустить ничего интересного!

Из чего состоит реальность?

Как известно, все элементарные частицы обладают массой. Рассчитать ее можно с помощью взаимодействия с другими частицами Стандартной модели. Дальше эту предсказанную массу необходимо сопоставить с фактическими измерениями, проведенными на коллайдере. Этой работой заняты примерно 400 сотрудников лаборатории Ферми (Fermilab).

W-бозоны это элементарные частицы, которые влияют на ядерные процессы, например, те, что происходят на Солнце. Стандартная модель гласит, что их масса связана с массой бозона Хиггса и субатомной частицы топ-кварка.

Продолжая анализировать W-бозоны, производимые коллайдером Tevatron, физики отслеживают множество ошибок, чтобы добиться беспрецедентного уровня точности в своих измерениях. Если избыточный вес W-бозонов можно подтвердить, открытие будет означать существование неизвестных науке частиц или сил. Более того, оно может привести к первому серьезному переписыванию законов квантовой физики за последние 50 лет.

Изучение настолько редких процессов позволит проверить предсказания Стандартной модели.

Полученные данные могут полностью изменить наше видение мира. Значимость бозона Хиггса покажется не такой уж и важной. Дело в том, что Хиггс хорошо вписывается в Стандартную модель в отличие от W-бозонов, отмечают авторы исследования.

Но несмотря на полученные результаты и разговоры о Новой физике, наполнять бокалы шампанским еще рано. В то время как новое измерение массы W-бозона само по себе резко отличается от предсказаний Стандартной модели, другие эксперименты не такие впечатляющие.

Читайте также: Колебание крошечной частицы нарушает известные законы физики

Загадочные бозоны

W-бозоны вместе с Z-бозонами опосредуют слабое взаимодействие одну из четырех фундаментальных сил Вселенной. В отличие от гравитации, электромагнетизма и сильного взаимодействия, слабое взаимодействие не столько толкает или притягивает, сколько превращает более тяжелые частицы в более легкие.

Например, мюон спонтанно распадается на W-бозон и нейтрино, а W-бозон затем становится электроном и другим нейтрино. Связанное с этим субатомное изменение формы вызывает радиоактивность.

Изучение W-бозона продолжается и сегодня, так как элементарная частица может участвовать в редких процессах, в которых ученые надеются найти следы Новой физики, полагают исследователи.

За последние 40 лет в различных экспериментах были измерены массы W- и Z-бозонов. Разница заключается в том, что массу W-бозона можно предсказать, объединив несколько других измеримых квантовых свойств в уравнениях Стандартной модели.

Эксперимент ATLAS продолжит работу, чтобы наконец узнать самые большие тайны Вселенной

Так, мюон при распаде кратковременно испускает W-бозон и эта промежуточная частица может взаимодействовать с другими частицами, в том числе неизвестными нам. Авторы исследования полагают, что именно это взаимодействие с неизвестностью может искажать массу W-бозона.

Вам будет интересно: Что такое бозон Хиггса и почему ученые хотели его открыть

Расхождение полученной учеными массы W-бозона примерно в семь раз больше предсказанной. В прошлом году физики коллаборации ATLAS уточнили темпы рождения мюонов и таонов в распадах W-бозонов на одноименном детекторе Большого адронного коллайдера (БАК уже произвел больше W-бозонов, чем его предшественник).

И хотя более высокая частота столкновений в БАК усложняет анализ массы W-бозона, сбор дополнительных данных критически важен. Особенно ввиду других открытий, которые также свидетельствуют о возможном пересмотре Стандартной модели. Подробнее об этих увлекательных исследованиях, мы рассказывали здесь, рекомендуем к прочтению. Новая физика маячит на горизонте.

Подробнее..

С точки зрения квантовой физики время всего лишь иллюзия

30.04.2022 18:11:56 | Автор: admin

Время абстрактная величина или математическое понятие, существующее в нашем представлении реальности.

Мы воспринимаем время как стрелу, указывающую вперед. К тому же, пространство и время неразрывно связаны между с собой. Их дуэт проявляется в движении и развитии материи. Что же до главой силы во Вселенной, то гравитация искусно вплетает материальные объекты в ткань пространства-времени и дуэт превращается в трио. Общая теория относительности (ОТО) Эйнштейна удивительно точно описывает Вселенную. Но квантовая механика нарушает эту гармонию, ведь в мире субатомных частиц все устроено иначе. Две фундаментальные физические теории не согласуются друг с другом, что привело к кризису в современной физике. Но что, если взглянуть на ситуацию радикально по-другому? Существует ли вообще время? И если нет, то как тогда устроена Вселенная?

Что такое время?

Начнем с того, что структуру реальности абсурдно ставить под сомнение. Ведь мы только и делаем, что сверяемся со временем. Отмечаем дни рождения и другие ежегодные праздники, да уж там, вся наша жизнь это одно большое расписание, график, к которому мы привыкли. Более того, все тонкие фрагменты времени, назовем их так, создают нас и повседневную жизнь повсюду.

Но если предположить, что радикальный пересмотр физической теории это правильный путь, способный все расставить по своим местам, для начала нужно понять что такое время.

Физики определяют время как последовательность событий из прошлого в настоящее и в будущее. Время также можно рассматривать как четвертое измерение реальности, используемое для описания событий в трехмерном пространстве. Следовательно, для нас время движется вперед, как стрела.

Время во Вселенной может не существовать вовсе

И если Вселенную рассматривать как замкнутую систему, ее энтропия (степень беспорядка) не может уменьшиться. Это означает, что Вселенная не может вернуться в прежнее состояние, следовательно, время не может обернуться вспять. Вроде бы, все верно, но недавно физики нащупали кое-что интересное: на квантовом уровне время течет иначе, а частицы могут путешествовать в прошлое.

Можно ли отследить квантовые частицы без наблюдателя? Ответ ловите в этой статье и не забудьте подписаться на наш канал в Telegram, чтобы всегда оставаться курсе последних научных открытий!

Уравнения, на которых построена физическая наука, гласят, что квантовые системы могут одновременно развиваться по двум противоположным стрелам времени (вперед и назад во времени). А значит, квантовые системы могут двигаться как вперед, так и назад. Подробнее о том, как физики пришли к такому выводу, мы рассказывали ранее.

Движение вперед

Достижения в области физики предполагают, что времени действительно не существует, по крайне мере в нынешнем его понимании. Многие ученые всерьез рассматривают эту возможность. Как выяснили исследователи из Австралийского католического университета, новая физическая теория ставит под сомнение само существование времени в нашей реальности.

На квантовом уроне времени не существует.

Важно понимать, что данный подход обусловлен математическими уравнениями. Если взять трехмерный набор координат, например, (x, y, z) и убрать из него «z», предположив, что ее «больше не существует», решение уравнения покажет другой результат. Подобные решения привели физиков к теории квантовой гравитации.

Мы не так часто об этом задумываемся и все же, как считаете, было ли у Вселенной начало? Исследователи считают, что она существовала всегда, в бесконечном прошлом и лишь недавно превратилась в то, что мы называем Большим взрывом. Продолжение можно прочитать здесь.

Безусловно, пересмотр нашей реальности это немалый подвиг. Особенно, когда речь заходит о теории петлевой квантовой гравитации или теории струн. И несмотря на то, что обе теории в некотором смысле потерпели неудачу, мечта Альберта Эйнштейна о создании теории всего вдохновляет ученых. Но есть еще кое-что интересное: теория петлевой квантовой гравитации допускает отсутствие времени как фундаментального понятия реальности.

Теория квантовой гравитации

Знаменитый мысленный эксперимент Эдвина Шредингера с кошкой и коробкой, внутри которой находится радиоактивное вещество это парадокс. Если мы откроем коробку, то кошка умрет из-за распада вещества. Но пока коробка закрыта и мы не видим кошку, она находится в квантовой суперпозиции, а значит и жива и мертва одновременно.

Для нас время может быть всего лишь иллюзией

Квантовая механика это область исследований, которая рассматривает, как частицы взаимодействуют между собой, находясь в суперпозиции. Это также означает, что частица может находиться в двух или даже во «всех» возможных местах одновременно. Конечно, путь к прогрессу тернист, однако ученые не были готовы к тому, насколько странной становится квантовая механика.

Загвоздка в том, что квантовая суперпозиция противоречит ОТО, которая была интегрирована в стандартную модель физики элементарных частиц с тех самых пор, как Эйнштейн впервые сформулировал ее в начале 1900-х годов.

Согласно ОТО, существующие физические объекты ведут себя ответ на силу гравитации. Время течет поразному в зависимости от того, где и как вы путешествуете в пространстве и является одним из ключевых законов Вселенной в рамках стандартной модели.

Но несмотря на популярную тенденцию подвергать сомнению природу времени, его физическая «реальность» не вызывает сомнений. Время является неотъемлемой частью Вселенной, а граница между событиями, которые были измерены, не определяет их исход.

Мы воспринимаем время как социальный конструкт

Согласно копенгагенской интерпретации квантовой механики, квантовый мир существует так же как и реальный мир. Это разделение показывает нам что происходит в природе, когда ранее неопределенные вещи становятся определенными. Выходит, время может быть фундаментальным. Но может и нет. То же самое происходит с воспринимаемой нами стрелой времени.

Больше по теме: Что такое многомировая интерпретация квантовой механики?

Новая эра физики

Но если пойти еще дальше и предположить, что время единственное, что удерживало человечество с самого зарождения цивилизации, будет уничтожено, то что останется Согласно классической физике, на выходе мы получим «причинно-следственную связь», то есть идею, согласно которой одно событие влечет за собой другое.

Это понятие не поддается никаким абсолютным понятиям и существует абстрактно, полагают исследователи.

В попытках связать математические уравнения с реальностью, ученые предполагают, что если времени не существует, то оно не оказывает прямого влияния на нашу жизнь, даже если продвигает физику в новую эру. Дело в том, что мы воспринимаем время как социальный конструкт, который является для нас реальностью, а измеряем мы его просто посмотрев на часы.

И даже если время на самом деле не существует, наша жизнь будет идти своим чередом.

О том, как продвигаются исследования в этой области, можно узнать в одной из предыдущих статей, рекомендуем к прочтению.

В конечном итоге это довольно удобно, так как человеческий мозг с трудом справляется с такими понятиями, как бесконечность и ткань пространства-времени. Но так как взаимодействие элементарных частиц между собой вызывает массу вопросов, а ответы на них нам пока неизвестны, физики и математики над этим работают.

Подробнее..

10 популярных мифов, доказанных Разрушителями легенд

29.09.2022 02:14:17 | Автор: admin

Разрушители легенд одна из самых популярных передач среди любителей технологий

В 2003 году по телевизору впервые показали выпуски телепередачи Разрушители легенд. В рамках этой программы многим известные Джейми Хайнеман и Адам Сэвидж проверяли утверждения из слухов, городских легенд и других порождений популярной культуры на правдивость. Например, однажды они узнали, действительно ли пирсинг на теле человека может притянуть к себе молнию. Оказалось, что это возможно только если речь идет об украшении размером с дверную ручку такой пирсинг будет носить не каждый, так что миф признали разрушенным, то есть невозможным. Однако, в некоторых выпусках ведущие с удивлением обнаруживали, что часть мифов работает о самых интересных из них мы сейчас и поговорим.

ВНИМАНИЕ: Не повторяйте упомянутые ниже эксперименты дома, это очень опасно!

Стакан воды может взорваться в микроволновке

В первом сезоне передачи экспериментаторы решили проверить, может ли разогретый в микроволновке стакан воды взорваться после извлечения. Оказалось, что это чистая правда, но только при условии, что речь идет о дистиллированной воде. Если нагреть ее в стакане при помощи микроволновки, она резко вскипает и выплескивается при контакте с любой примесью. Например, это может произойти, если положить в стакан ложку из любого материала.

Миф был проверен в 4 эпизоде первого сезона

При помощи колы можно чистить предметы

Многие лайфхаки гласят, что при помощи кока-колы многие вещи можно очистить от ржавчины и сильных загрязнений. Ведущие Разрушителей мифов не могли пройти мимо и решили проверить, так ли это на самом деле. В том же первом сезоне они доказали, что газированный напиток хорошо устраняет пятна крови, отлично очищает хром и монеты ржавчина ему тоже по плечу.

Миф был проверен в 5 эпизоде 1 сезона

Читайте также: Кока-кола сделала мышей глупее. А как она влияет на людей?

На зубных щетках есть бактерии из унитаза

В некоторых квартирах ванная комната совмещена с туалетом, поэтому зубных щетки находятся недалеко от унитаза. Логично предполагать, что после смыва находящиеся в унитазе бактерии хотя бы частично попадают на зубные щетки. Осознавать этот факт неприятно, но фекальные бактерии действительно имеются на средствах гигиены полости рта это было доказано в одном из выпусков. К счастью, их концентрация не так велика, чтобы стать причиной болезней. Избежать попадания бактерий на зубные щетки практически невозможно.

Миф был проверен в 11 эпизоде 2 сезона

Сосульки могут убить человека

Зимой и тем более весной необходимо избегать зон поблизости домов. Все потому, что оттуда в любой момент могут упасть сосульки и сломать человеку голову. Это было доказано в одном из выпусков Разрушителей легенд. Когда ведущие сбросили сосульку длиной 45 сантиметров с 4,5-метровой высоты, она насквозь пробила кусок мяса. Будьте осторожны!

Миф был проверен в новогоднем эпизоде

Стекло можно разбить при помощи голоса

В некоторых фильмах и мультиках нам показывают, как оперные певцы при помощи своего высокого голоса разбивают стекло. Оказалось, что это правда сначала ведущие программы разбили стекло при помощи звука из динамиков, а потом то же самое сделал певец Джейми Вендера. Никакие усилители ему в этом деле не понадобились.

Миф был проверен в 31 эпизоде 3 сезона

Огонь можно добыть трением палочек

В некоторых фильмах и передачах про выживание нам показывают, как люди добывают огонь путем трения двух палочек. Несмотря на то, что это считается мифом, ведущие Разрушителей легенд доказали, что такой метод добычи огня работает. Правда, для этого они использовали дрель и оружейный порох в основном, они жульничали. Но Джейми Хайнеман утверждал, что раньше ему удавалось добыть огонь даже без таких вспомогательных средств, только двумя палочками.

Миф был проверен в 45 эпизоде 4 сезона

Лопнувшая шина может убить человека

В ходе одного из выпусков Джейми и Адам решили выяснить, может ли лопнувшая шина грузовика убить человека. Сначала они убедились, что колесо действительно может лопнуть это может произойти, если грузовик на большой скорости наедет на ежа. При этом ошметки резины разлетаются в стороны очень большой скоростью. Это настолько опасное явление, что фрагмент колеса способен пробить стекло автомобиля и убить водителя.

Миф был проверен в 80 эпизоде 5 сезона

Дорожку от пороха можно обогнать

В фильмах и мультиках иногда показывают, как злодей делает дорожку из пороха, чтобы поджечь ее и взорвать бочку. При этом герои догоняют горящую искру, сдувают порох и тем самым предотвращают взрыв. Авторы Разрушителей легенд решили проверить и этот миф оказалось, что дорожку из пороха действительно можно догнать. Более того, для этого даже не нужно бежать, достаточно быстрого шага.

Миф был проверен в 88 эпизоде 5 сезона

Закопанный в песок человек не может выбраться

Во многих выпусках ведущие рисковали своим здоровьем. Однажды они решили проверить, может ли закопанный по шею в песок человек самостоятельно выбраться из ловушки. Если речь идет о сухом песке, это вполне возможно это занимает около часа. Но если человек закопан во влажный песок, образующиеся в ходе выкапывания пустоты быстро заполняются новым слоем, из-за чего выбраться невозможно.

Миф был проверен в 92 эпизоде 5 сезона

Читайте также: Как погиб Порт-Ройал, столица пиратов Карибского моря

Одиночество делает людей злыми

Наконец, в одном из выпусков Разрушителей легенд было решено проверить, как на людей влияет одиночество. Ведущие Джейми и Адам были помещены в домики, где нет ничего для развлечений. Оказавшись в таких условиях, они начали больше есть, а потом, как минимум у Адама, появились раздражительность, забывчивость, склонность ко сну и покраснение глаз. У Джейми возник только один из этих симптомов. В итоге они решили, что миф правдоподобен.

Миф был проверен в 101 эпизоде 6 сезона

Чтобы не пропустить важные новости науки и технологий, подпишитесь на наш Дзен-канал.

А вы смотрели Разрушителей легенд? Какой из экспериментов вам запомнилась больше всего? Пишите в комментариях или нашем Telegram-чате.

Подробнее..

Ученые создали черную дыру в лаборатории и она начала светиться

24.11.2022 00:14:52 | Автор: admin
Ученые создали черную дыру в лаборатории и она начала светиться. Новые исследования показывают, что искусственные черные дыры функционируют так же, как настоящие. Фото.

Новые исследования показывают, что искусственные черные дыры функционируют так же, как настоящие

Среди бесчисленного множества космических объектов, самыми загадочными являются черные дыры области пространства-времени, сила притяжения которых настолько велика, что даже фотоны света не могут вырваться за пределы их горизонта событий. Считается, что сверхмассивные черные дыры находятся в центрах галактик и Млечный Путь не исключение. И хотя наши знания о Вселенной и ее обитателях ограничены, ученые продолжают собирать их по крупицам. По мере развития технологий важнейшим научным инструментом стали компьютерные модели с их помощью исследователи разработали реалистичные модели Вселенной. Более того, ранее в этом году команда физиков из Амстердамского университета смоделировала горизонт событий черной дыры в лаборатории. Может показаться удивительным, однако искусственная черная дыра начала испускать излучение, как и предполагал знаменитый физик-теоретик Стивен Хокинг. Это открытие, вероятно, позволит ученым разработать совершенно новую физическую теорию, сочетающую общую теорию относительности (ОТО) и принципы квантовой механики. Но как?

В 1974 году Стивен Хокинг предположил, что небольшие черные дыры могут испаряться, что в целом является парадоксом, так как покинуть горизонт событий не могут даже фотоны самого света.

Космические монстры

Черные дыры начинают свой жизненный путь со смерти звезды, чья масса превышает солнечную минимум в три раза, выгорают и взрываются, отбрасывая внешнюю оболочку, после чего сжимаются и коллапсируют в черные дыры. Этот процесс происходит постоянно новые звезды рождаются, старые погибают. И чем больше звезда, тем быстрее она сжигает топливо и погибает. Однако происхождение сверхмассивных черных дыр (масса которых превышает солнечную в миллионы и миллиарды раз) до сих пор неизвестно.

Этот процесс настолько удивителен, что современная наука уделяет ему много внимания: небольшие черные дыры, возможно, сформировались в центре молодых галактик в процессе слияния (столкновения). Понимание физики этих объектов является ключом к разгадке фундаментальных законов, управляющих Вселенной. Все потому, что черные дыры представляют собой предел двух наиболее проверенных теорий ОТО и квантовой механики.

Космические монстры. Вряд ли во Вселенной найдутся объекты, более странные, чем черные дыры. Фото.

Вряд ли во Вселенной найдутся объекты, более странные, чем черные дыры

Напомним, что ОТО Эйнштейна описывает гравитацию как результат деформации пространства-времени массивными объектами, а квантовая теория устройство мироздания на уровне атомов.

Но несмотря на полученные изображения горизонта событий черной дыры в сердце Млечного Пути и в центре галактики M87 (Messier 87), вопросов у ученых по-прежнему много. Так, британский физик-теоретик Стивен Хокинг десятилетиями изучал эти таинственные объекты и в 1974 году предположил, что прерывание квантовых флуктуаций горизонта событий испускает тип излучения, похожий на тепловое. Проблема заключается в том, что это излучение, вероятно, слишком слабое, чтобы его смогли обнаружить обитатели Земли.

Излучение Хокинга

Чтобы проанализировать свойства излучения Хокинга, исследователи решили создать его аналог в лаборатории (этим грешат многие молодые ученые), что в итоге удалось группе физиков из Амстердамского университета. В ходе исследования физики наблюдали потрясающий результат своей работы свечение на смоделированном горизонте событий, правда при соблюдении определенных условий.

Отметим, что наблюдаемое искусственное излучение представляет собой частицы, созданные возмущениями квантовых флуктуаций из-за искривления пространства-времени силой гравитации черной дыры.

Предложенная модель в будущем позволит изучить окружающее черные дыры пространство, на которое не влияет экстремальная динамика их образования. «Наша работа может помочь в дальнейшем изучении фундаментальных аспектов квантовой механики, а также гравитации и искривленного пространства-времени в различных средах с конденсированной материей», пишут авторы нового исследования.

Излучение Хокинга. Перед вами черная дыра поглощающая материю прямо в центре нашей Галактики. Фото.

Перед вами черная дыра поглощающая материю прямо в центре нашей Галактики

Больше по теме: Теория Стивена Хокинга о черных дырах получила подтверждение

Но вот что еще удивительнее полученные результаты приводят нас прямиком к феномену квантовой запутанности явлению, при котором две частицы остаются связанными вне зависимости от того, как далеко находятся друг от друга. Как полагают авторы работы, опубликованной в журнале Monthly Notices of the Royal Astronomical Society, запутанность частиц, пересекающих горизонт событий, играет важную роль в генерации излучения Хокинга.

Черная дыра из лаборатории

Чтобы создать горизонт событий в лабораторных условиях, физики смоделировали однорядную цепочку атомов. Возникшее в результате излучение Хокинга частицы, созданные возмущениями квантовых флуктуаций из-за разрыва пространства-времени черной дырой проявилось в виде видимого свечения.

Затем команда занялась непосредственным созданием искусственной черной дыры для чего и была разработана одномерная цепочка атомов, между которой электроны «прыгают» из одного положения в другое. Настроив легкость, с которой могут происходить эти прыжки, исследователи создали своего рода горизонт событий, который мешал волнообразной природе электронов.

Черная дыра из лаборатории. Черная дыра развивается за счет вещества, которое поглощает. Фото.

Черная дыра развивается за счет вещества, которое поглощает

Различная сила связи между атомами имитирует искривление пространства-времени в присутствии черной дыры. По сути, мы использовали цепочку атомов в одном файле для моделирования горизонта событий черной дыры чтобы наблюдать излучение Хокинга, рассказали исследователи, о чем сообщает издание ScienceAlert.

Как отмечают авторы научной работы, разработанная модель соответствовала теоретическим ожиданиям в тот момент, когда часть цепочки атомов выходила за горизонт событий. Это может означать, что квантовая запутанность частиц генерирует излучение Хокинга. Правда, что именно полученные результаты означают для пока не существующей теории квантовой гравитации, неясно. К счастью, труд команды из Амстердамского университета можно использовать в самых разных экспериментальных установках, а значит, дальнейших открытий не миновать.

Черная дыра из лаборатории. Благодаря столкновению двух черных дыр исследователи доказали существование гравитационных волн. Это знаменательное событие произошло в 2017 году и было отмечено Нобелевской премией по физике. Фото.

Благодаря столкновению двух черных дыр исследователи доказали существование гравитационных волн. Это знаменательное событие произошло в 2017 году и было отмечено Нобелевской премией по физике

Как только объект пересекает горизонт событий черной дыры, нам остается лишь гадать что лежит за его пределами. Не исключено, что эти космические монстры могут оказаться порталами в другие вселенные или способом путешествия по нашей собственной. Подробнее о том, как физики-теоретики пришли к такому выводу, мы рассказывали ранее, не пропустите.

Хотите первыми узнавать о последних научных открытиях в области физики и высоких технологий? Подписывайтесь на наш канал в Telegram чтобы всегда быть в курсе происходящего!

Напомним, что одним из главных желаний Стивена Хокинга было создание единой теории квантовой гравитации, которая могла бы объединить две непримиримые теории и, следовательно, могла бы применяться повсеместно и наконец узнать фундаментальные законы Вселенной и нашего существования в ней. О других, не менее интригующих научных теориях о квантовых свойствах черных дыр, можно прочитать здесь.

Подробнее..

Какие вещи нельзя оставлять в автомобиле в зимние морозы

15.12.2022 16:16:26 | Автор: admin
Какие вещи нельзя оставлять в автомобиле в зимние морозы. Существуют вещи, которые лучше не оставлять зимой внутри автомобиля. Фото.

Существуют вещи, которые лучше не оставлять зимой внутри автомобиля

Зима красивое, но достаточно тяжелое время года. Чтобы выйти на улицу, людям приходится надевать целую кучу теплой одежды, но это далеко не все заботы в зимнее время. Например, владельцам автомобилей необходимо по утрам выходить на улицу раньше, чтобы успеть прогреть двигатель нельзя просто взять и поехать по делам. Но и это не единственная забота автомобилистов, потому что им нужно тщательно следить за тем, чтобы не оставить на морозе личные вещи. Ведь если ночью нагрянет сильный мороз, забытая в салоне техника может быть сломана, а продукты могут быстро испортиться. В рамках данной статьи предлагаем выяснить, какие вещи категорически нельзя оставлять в машине в мороз возьмите на заметку!

Как ломается техника на морозе

В первую очередь нужно запомнить, что зимой ни в коем случае нельзя оставлять в салоне автомобиля электронную технику. Речь идет не только о смартфоне нужно следить, чтобы внутри не остался фитнес-браслет, портативный аккумулятор, колонка для прослушивания музыки и так далее.

Как ломается техника на морозе. Холод вредит любой электронной технике. Впрочем, как и жара…. Фото.

Холод вредит любой электронной технике. Впрочем, как и жара…

В первую очередь, низкие температуры вредят литий-ионным аккумуляторам. Мороз может стать причиной не только быстрого разряда (особенно с этим явлением знакомы владельцы техники Apple) после ночи в машине техника с высокой долей вероятности начнет работать меньше времени от одного заряда. Это связано с тем, что холод замедляет движение ионов лития, сгущает электролит, и увеличивает внутреннее сопротивление. Обычно после прогрева устройство включается, но ущерб устройству наносится навсегда.

Как ломается техника на морозе. Особенно сильно от мороза страдают литий-ионные аккумуляторы смартфонов. Фото.

Особенно сильно от мороза страдают литий-ионные аккумуляторы смартфонов

Также при нагреве замершего смартфона или другой техники, внутри корпуса может образоваться конденсат. Он приводит к коррозии металлических деталей и сокращает срок службы устройства.

Читайте также: Почему автомобильные дороги часто ремонтируются в дождь и снег?

Как портятся лекарства на морозе

В каждом автомобиле должна быть аптечка, и многие люди даже не помнят о ее существовании. А очень зря, потому что от мороза сильно страдают микстуры, сиропы и капли их эффективность заметно уменьшается. Таблетки и капсулы подвержены влиянию низких температур меньше, но все равно нуждаются в бережном хранении. Лучше всего, в особенно морозные дни аптечку или пакет с лекарствами забирать домой. В противном случае, в нужный момент они могут оказаться бесполезными.

Как портятся лекарства на морозе. Лекарства нужно хранить так, как написано в инструкции. Фото.

Лекарства нужно хранить так, как написано в инструкции

Это нужно знать каждому: Что делать с просроченными лекарствами?

Как портится бытовая химия на морозе

Наверное, с каждым человеком происходила неприятная ситуация, когда после приезда из магазина, один пакет с товарами остался в салоне или багажнике. Как бы ни хотелось остаться дома, лучше одеться и сходить за ним. Если в пакете находится бытовая химия, упаковка запросто может лопнуть от холода в состав жидких чистящих средств обязательно входит вода, которая при замерзании расширяется и разрывает упаковку.

Как портится бытовая химия на морозе. Бытовой химии тоже не место в автомобиле. Фото.

Бытовой химии тоже не место в автомобиле

Вообще, это касается любой емкости с жидкостью. Если в салоне или багажнике автомобиля остались бутылки с напитками, они с высокой долей вероятности лопнут при сильном морозе. В этот же список можно добавить консервы, йогурты и так далее. Если емкости останутся целыми, могут пострадать вкусовые качества продуктов.

Почему нельзя хранить яйца на морозе

Куриные яйца рекомендуется хранить при температуре около +2,2 градусов Цельсия. Получается, что лучшее место для них это дверце холодильника, а не автомобиль, стоящий во дворе. При низких температурах, скорлупа яиц покрывается крошечными трещинами, потому что находящаяся внутри жидкость замерзает и расширяется. Эти трещины не видны для человеческого глаза, но их ширины достаточно для того, чтобы внутрь проникли бактерии. Когда поврежденные холодом яйца оказываются в тепле, они очень быстро портятся. А это чревато пищевым отравлением. Так что яйца лучше не оставлять на морозе.

Почему нельзя хранить яйца на морозе. Оставшиеся на морозе яйца быстрее портятся. Фото.

Оставшиеся на морозе яйца быстрее портятся

Читайте также: Ученые рассказали, почему люди простужаются на холоде

Повреждение музыкальных инструментов на морозе

Наконец, стоит отметить, что в холодном автомобиле нельзя оставлять музыкальные инструменты. Особенно это касается гитар обычно они стоят дорого, а мороз может быстро их испортить. Загибайте пальцы: при низкой температуре воздуха, древесина коробится, а лак начинает трескаться и шелушиться. Если передержать инструмент на морозе, корпус гитары деформируется до такой степени, что лопаются струны. Так что, если не хочется распрощаться с любимой гитарой или любым струнным инструментом, лучше не оставлять их на холоде, даже на пару часов.

Повреждение музыкальных инструментов на морозе. Гитару нельзя оставлять на холоде, иначе она станет непригодной для использования. Фото.

Гитару нельзя оставлять на холоде, иначе она станет непригодной для использования

В конечном итоге получается, что зимой владельцам автомобилей лучше каждый день проверять, не осталось ли в салоне или багажнике ничего лишнего.

Можно даже составить небольшой чек-лист:

  • смартфон, часы и любая другая техника;
  • таблетки и другие лекарства;
  • бытовая химия и другие жидкости;
  • продукты питания;
  • музыкальные инструменты.

Не забудьте подписаться на наш Дзен-канал. Там вы найдете много чего интересного!

Вообще, в машине лучше не оставлять лишнего никогда вещи могут привлечь внимание грабителей. Может быть, вам есть чем дополнить этот список? Пишите в комментариях.

Подробнее..

Могут ли фотоны двигаться вперед и назад во времени?

02.01.2023 22:17:29 | Автор: admin
Могут ли фотоны двигаться вперед и назад во времени? «Квантовый переворот времени» заставляет свет двигаться одновременно вперед и назад во времени. Фото.

«Квантовый переворот времени» заставляет свет двигаться одновременно вперед и назад во времени

Законы, по которым работает Вселенная, весьма странные. И хотя физики смогли объяснить взаимодействие наблюдаемых небесных тел, на уровне элементарных частиц все намного сложнее. Так, сразу два отдельных исследования, проведенных осенью 2022 года, продемонстрировали так называемый «квантовый переворот времени» эксперимент, в котором фотоны могут одновременно двигаться вперед и назад во времени. И хотя речь не идет о создании Делориана, это открытие может помочь в разработке квантовых компьютеров и создании теории квантовой гравитации (той самой теории всего). Трудно поверить, но в ходе работы физикам удалось расщепить фотон (квант самого света) и наблюдать его как в прямом, так и в обратном временном состоянии, в очередной раз демонстрируя многочисленные странности квантового мира. Исследователи отмечают, что в основе проведенных экспериментов лежат самые загадочные принципы квантовой механики.

Странный квантовый мир

Квантовая механика объясняет как крошечные элементарные частицы взаимодействуют между собой создавая окружающий мир. И хотя мы практически не сталкиваемся с квантовым миром в повседневной жизни, представить современную жизнь без нее невозможно, из-за чего ученые уделяют ей много времени, постепенно раскрывая различные области ее применения.

Ведущим принципом квантовой механики является квантовая суперпозиция явление, продемонстрированное в ходе двухщелевого эксперимента, результат которого показал, что частицы могут одновременно находиться в двух или во всех возможных местах одновременно. Лучше прочего этот феномен описал физик Эрвин Шредингер в своем мысленном эксперименте с кошкой и коробкой (подробнее мы рассказывали здесь).

Больше по теме: Тайны квантовой механики что такое квантовая запутанность?

Странный квантовый мир. В квантовом мире время может одновременно протекать в нескольких направлениях. Фото.

В квантовом мире время может одновременно протекать в нескольких направлениях.

Но квантовая суперпозиция не единственный феномен физики элементарных частиц. Альберт Эйнштейн, к примеру, не мог смириться с таким явлением как квантовая запутанность, которую он называл «сверхъестественной». И его можно понять как могут элементарные частицы, находясь вдали друг от друга, оставаться взаимозависимыми?

Напомним, что квантовая запутанность возникает когда две или более частицы поддерживают между собой связь то, что происходит с одной частицей, моментально оказывает влияние на другую, несмотря на расстояние между ними. Согласитесь, объяснить это классическим способом невозможно, как, собственно, и должным образом представить. И тем не менее эти два принципа суть квантовой механики.

Еще больше интересных статей о последних открытиях в области физики элементарных частиц и новейших технологий читайте на нашем канале в Яндекс.Дзен там регулярно выходят статьи, которых нет на сайте!

Кошка в коробке

Квантовый эксперимент, в котором частица света может одновременно двигаться вперед и назад во времени, является еще одним примером странностей квантового мира. В ходе двух не связанных между собой экспериментах физикам удалось продемонстрировать явление под названием
«квантовый переворот времени», в основе которого, как вы могли догадаться, лежат квантовая суперпозиция и квантовая запутанность.

Кошка в коробке. Совокупность всех состояний, в которых может одновременно находиться кот называется квантовой суперпозицией. Фото.

Совокупность всех состояний, в которых может одновременно находиться кот называется квантовой суперпозицией

Так как квантовая суперпозиция позволяет таким частицам как фотоны существовать в разных состояниях, а запутанность связывает их между собой, «квантовый переворот времени» позволяет фотонам существовать как в прямом, так и в обратном временных состояниях. Это означает, что частицы подчиняются одним и тем же законам физики, даже когда они находятся в перевернутом (или зеркальном) состоянии.

Не пропустите: Существует ли реальность без наблюдателя?

Объединив две основные концепции квантовой механики физики из Оксфордского университета расширили математические представления о том, как может выглядеть суперпозиция процессов, одновременно идущих вперед и назад во времени. (Суперпозиция процессов по мнению физиков, больше похожа на объект, вращающийся одновременно по и против часовой стрелки).

Кошка в коробке. Мы воспринимаем время как стрелу, указывающую вперед. Но что, если это не так? Фото.

Мы воспринимаем время как стрелу, указывающую вперед. Но что, если это не так?

Представить этот «квантовый переворот времени» можно вновь воспользовавшись кошкой и коробкой будучи ни живой ни мертвой (т.е. в состоянии суперпозиции), кошка в коробке движется в прошлое и будущее одновременно. Да, кажется безумием. Но только на первый взгляд.

Квантовый переворот времени

Как пишет один из авторов нового исследования Эрик Лутц из Штутгартского университета, если квантовая механика допускает суперпозицию состояний, почему нельзя допустить суперпозицию процессов? Удивительно, но это утверждение удалось доказать в ходе проведенного эксперимента.

Читайте также: Нужна ли нам возможность путешествия назад в прошлое?

Выбрав фотон в качестве испытуемой частицы, физики успешно расщепили его с помощью специального оптического кристалла, при котором фотон существует в разных временных состояниях. Обе команды, как сообщает Live Science, наблюдали как расщепленная частица света проходит через кристалл. Повторив этот эксперимент необходимое количество раз, обе команды статистически доказали, что расщепленная частица может двигаться сразу в двух направлениях времени прямом и обратном.

Квантовый переворот времени. Квантовый компьютер тихнологии будущего. Фото.

Квантовый компьютер тихнологии будущего

Мы наблюдали квантовую интерференционную картину узор из светлых и темных полос, который мог существовать только в том случае, если фотон был расщеплен и двигался в обоих временных направлениях, говорится в работе.

В будущем это открытие, как отмечают его авторы, может помочь в создании теории всего (объединив квантовую механику с нашим понимаем гравитации), а также может оказаться полезным для квантовых вычислений.

Читайте также: С точки зрения квантовой физики время всего лишь иллюзия

Проведенные эксперименты в конечном итоге позволят исследователям наблюдать самые загадочные явления во Вселенной, став ключом к пониманию экзотической физики черных дыр и путешествий во времени и пространстве. Полученные результаты противоречат многим фундаментальным законам физики, которые в целом симметричны и не имеют предпочтительного направления времени (что ставит под сомнение известную и общепринятую сегодня концепцию стрелы времени).

Квантовый переворот времени. Свет может одновременно вести себя и как частица и как волна. Фото.

Свет может одновременно вести себя и как частица и как волна

Отметим, что обе работы были недавно опубликованы на сервере препринтов arXiv и пока не прошли экспертную оценку (рецензирование). Ознакомиться с текстом исследований можно здесь и здесь. Напомним также, что новым этапом в развитии квантовых технологий может стать применение так называемых кристаллов времени, о чем мы ранее подробно рассказывали.

Подробнее..

Ученые наблюдали новый вид квантовой запутанности внутри атомных ядер

05.01.2023 16:18:26 | Автор: admin
Ученые наблюдали новый вид квантовой запутанности внутри атомных ядер. Коллайдер тяжелых ионов (RHIC) позволяет отслеживать частицы, возникающию в результате столкновений в центре детектора. Фото.

Коллайдер тяжелых ионов (RHIC) позволяет отслеживать частицы, возникающию в результате столкновений в центре детектора.

Как устроена реальность? И не является ли она постоянной иллюзией? Физики десятилетиями пытаются ответить на эти вопросы, но чем больше они узнают о мире, тем более странным он становится. Мы знаем, что материя состоит из крошечных частиц, а их взаимодействие между собой едва ли можно представить. Взять, к примеру, квантовую суперпозицию согласно этому принципу частицы могут находиться в нескольких состояниях одновременно, однако определить результат их состояния до момента наблюдения невозможно. Еще одним фундаментальным принципом физики элементарных частиц является квантовая запутанность, согласно которой частицы остаются взаимосвязанными вне зависимости от расстояния между ними. И хотя «привычная» запутанность демонстрирует иллюзорность нашей реальности, в начале 2023 года физики из Брукхейвенской национальной лаборатории (США) сообщили о ее новом виде, обнаруженном впервые в истории.

Новая квантовая запутанность

Фундаментальные принципы квантовой механики раз за разом бросают вызов здравому смыслу, показывая что реальность в значительной степени иллюзорна. К счастью, современные научные инструменты позволяют детально изучать форму и детали внутри атомных ядер последнее удалось физикам из Брукхейвенской национальной лаборатории США с помощью релятивистского коллайдера тяжелых ионов (RHIC).

В ходе эксперимента исследователи наблюдали за фотонами и ионами золота в момент их ускорения вокруг коллайдера и обнаружили новый тип квантовой запутанности. Но вот что еще удивительнее ученые также наблюдали совершенно новый вид квантовой интерференции экзотического эффекта, согласно которому частица вроде фотона при движении может пересекать собственную траекторию. Исследование этого эффекта считается одним из самых перспективных в современной физике. Но обо всем по-порядку.

Новая квантовая запутанность. Законы, по которым работает Вселенная, весьма странные. Фото.

Законы, по которым работает Вселенная, весьма странные.

Интересный факт
Изучая одну запутанную частицу, ученые сразу же узнают о другой, даже если они находятся на расстоянии миллионов световых лет друг от друга. Эта странная связь между двумя (и более) частицами происходит мгновенно, по-видимому, нарушая фундаментальный закон Вселенной. По этой причине Альберт Эйнштейн называл запутанность "жуткой" и "сверхъестественной".

Коллайдер RHIC располагается в учреждении Министерства образования и науки США, где физики могут изучать строительные блоки ядерной материи т.е. кварки и глюоны, из которых состоят протоны и нейтроны. Сталкивая ядра тяжелых атомов, например золота, исследователи наблюдали их движение в противоположных направлениях вокруг коллайдера со скоростью, близкой к скорости света.

Это означает, что интенсивность столкновений между ядрами может «расплавить» границы между отдельными протонами и нейтронами, позволяя изучать кварки и глюоны такими, какими они существовали вскоре после Большого взрыва до образования протонов и нейтронов, говорится в работе.

Новая квантовая запутанность. На самом деле никто не знает, какие квантовые процессы в реальном мире отвечают за создание пространства-времени. Фото.

На самом деле никто не знает, какие квантовые процессы в реальном мире отвечают за создание пространства-времени.

Как гласит принцип квантовой запутанности, аспекты одной частицы запутанной пары зависят от аспектов другой частицы, вне зависимости от того, насколько далеко друг от друга они находятся (и что лежит между ними). Этими частицами могут быть, например, электроны или фотоны, а аспектом может быть состояние, в котором они находятся, к примеру, «вращение» в том или ином направлении. Физики также хотят знать, как кварки и глюоны ведут себя внутри атомных ядер в их нынешнем состоянии чтобы лучше понять силу, которая удерживает эти строительные блоки материи вместе.

Больше по теме: Может ли квантовая механика объяснить существование пространства-времени?

Что происходит внутри атомных ядер

Чтобы узнать больше информации о частицах и их поведении, физики использовали «облака» фотонов (частиц света), которые окружали ускоряющиеся ионы вокруг коллайдера RHIC именно этот способ позволил ученым заглянуть внутрь ядер. Если два иона золота проходили мимо друг друга на близком расстоянии и не сталкивались, фотоны, окружающие один ион, позволяли изучить внутреннюю структуру другого.

Эта двумерная визуализация, как показали результаты эксперимента, оказалась революционной атомное ядро выглядит слишком большим по сравнению с тем, что предсказывали теоретические модели. Более того, поляризованный свет позволил получить подробные изображения атомных ядер с высокой энергией и рассмотреть распределение глюонов (вдоль направления движения фотона и перпендикулярно ему).

Что происходит внутри атомных ядер. Полученные результаты также совпадают с теоретическими предсказаниями распределения глюонов и измерения распределения электрического заряда внутри ядер. Фото.

Полученные результаты также совпадают с теоретическими предсказаниями распределения глюонов и измерения распределения электрического заряда внутри ядер

Еще больше интересных статей о последних открытиях в области квантовой механики и высоких технологий читайте на нашем канале в Яндекс.Дзен там регулярно выходят статьи, которых нет на сайте

Новые измерения также показали, что импульс и энергия самих фотонов запутываются с импульсом и энергией глюонов. Измерение только вдоль направления фотона (или его неизвестного направления) приводит к искажению изображения фотонными эффектами. Но измерение в поперечном направлении позволяет избежать «размытия» частиц света.

Теперь мы можем сделать снимок, на котором можно различить плотность глюонов под заданным углом и радиусом. Полученные изображения настолько точны, что мы начинаем видеть разницу между тем, где находятся протоны, и тем, где расположены нейтроны внутри этих больших ядер, пишут авторы исследования.

Что происходит внутри атомных ядер. Коллайдер в Брукхейвенской национальной лаборатории США. Фото.

Коллайдер в Брукхейвенской национальной лаборатории США

Измеряя две частицы с различными зарядами физики наблюдали интерференционную картину, что указывает на запутанность или синхронизацию частиц друг с другом, даже если эти частицы разные (включая заряд).

Вам будет интересно: Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?

Новый взгляд на запутанность и интерференцию

Авторы работы, опубликованной в начале 2023 года в журнале Science Advances, отмечают, что все частицы, о которых идет речь в работе,
существуют не только как физические объекты, но и как волны подобно ряби на поверхности пруда, они ударяются о камень (математические волновые функции) и могут интерферировать, усиливая или нейтрализуя друг друга.

Интерференция возникает между двумя волновыми функциями идентичных частиц, но без запутывания (между двумя разнородными частицами) эта интерференция была бы невозможна. Вот так квантовая механика становится все более и более странной новый эксперимент показал, что квантовая запутанность существует между разнородными частицами.

Читайте также: Могут ли фотоны двигаться вперед и назад во времени?

«Этот метод похож на позитронно-эмиссионную томографию (ПЭТ-сканирование), чтобы увидеть происходящие внутри мозга и других частей тела процессов», объясняет Джеймс Дэниел Бранденбург из Брукхейвенской лаборатории (США). В последние годы ученые уделяют все больше внимания квантовой механике. Одна из причин повышенного внимания заключается в создании новых мощных средств связи и компьютеров.

Новый взгляд на запутанность и интерференцию. Запутанность квантовых состояний это реальность. Фото.

Запутанность квантовых состояний это реальность.

Исследователи также намерены проводить новые измерения в RHIC с более тяжелыми частицами (чтобы проверить другие возможные сценарии квантовой запутанности). Подробнее о том, какие открытия 2022 года оказали огромное влияние на наши знания об устройстве Вселенной мы рассказывали здесь, не пропустите!

Подробнее..

Почему со временем научных открытий становится меньше?

15.01.2023 16:12:14 | Автор: admin
Почему со временем научных открытий становится меньше? Одни из величайших культурных и технологических достижений произошли в период с 1945 по 1971 год. Фото.

Одни из величайших культурных и технологических достижений произошли в период с 1945 по 1971 год.

Как думаете, мы и правда живем в «золотой век» технологического, медицинского, научного и социального прогресса? Похоже, все действительно так нас окружают удивительные технологии, представить которые было не так уж и просто всего 20 лет назад. Средняя продолжительность жизни растет с каждым днем и практически каждую неделю мы узнаем о «новых надеждах» для больных раком, разработках в лаборатории, которые могут привести к новым методам лечения, разговорах о новой эре космического туризма, суперджетах и отправке людей на Марсе. Звучит потрясающе, но если присмотреться внимательнее, то видение беспрецедентных инноваций оказывается иллюзорным многие из захватывающих дух историй о прогрессе на самом деле предположения (а временами и вовсе фантазии). Так, согласно недавно опубликованному исследованию, темпы новаторских научных открытий и технологических инноваций замедляются, несмотря на постоянно растущий объем знаний. Но почему?

Эксперты называют прорывными открытиями те, которые не основаны на уже существующих идеях и выводят всю научную область на новую территорию.

«Золотой век» научно-технического прогресса

За несколько лет до публикации Общей теории относительности (ОТО), академическое сообщество считало, что физика, как дисциплина, достигла предела. Однако после публикации Эйнштейна, ставшей самой настоящей революцией в этой области, появилась квантовая механика. Сегодня едва ли кто-то усомниться в том, что середина ХХ века стала отправной точкой стремительного научно-технического прогресса.

Так, в 1942 году в США был разработан первый атомный реактор, а 11 лет спустя ученые изучили молекулярную структуру ДНК (которая хранит генетический код), что положило начало развитию генной инженерии. Четыре года спустя, в 1957 году, СССР запустили в космос первый спутник, а в 1961 году Юрий Гагарин стал первым человеком в космосе. Поразительно, но спустя всего 8 лет американская миссия «Аполлон-11» достигла Луны и астронавты Нил Армстронг и Эдвин Базз Олдрин впервые ступили на поверхность нашего спутника.

«Золотой век» научно-технического прогресса. Исследователи обнаружили, что в последние десятилетия темпы прорывных научных открытий замедлились. Фото.

Исследователи обнаружили, что в последние десятилетия темпы прорывных научных открытий замедлились.

И несмотря на то, что в 1990 годы интернет стал доступен широкой публике, как и мобильная спутниковая связь, «золотой век» научно-технического прогресса пришелся на 40-50-е гг. ХХ века. многие исследователи считают, что это стало возможным благодаря превращению науки в главный фактор социально-экономического развития общества.

Больше по теме: Математика конца света: может ли научный прогресс привести к гибели человечества?

Ряд исследователей и вовсе считает, что так называемый золотой век инноваций длился примерно с 1945 по 1971 год. Практически все, что определяет современный мир, либо возникло, либо посеяло семена именно в этот период: таблетки, электроника, компьютеры, Интернет, атомная энергия, телевидение, антибиотики, космические путешествия и пр. Но что происходит сегодня? Можем ли мы с уверенностью утверждать, что научно-технический прогресс по-прежнему продолжается?

«Золотой век» научно-технического прогресса. Современная наука распадается на более изолированные области знания. Фото.

Современная наука распадается на более изолированные области знания

Может показаться удивительным, но несмотря на все достижения в области медицины, ядерной энергетики и искусственного интеллекта, научно-технический прогресс замедляется, а новых, иновационных открытий становится меньше. К такому выводу пришли авторы работы, недавно опубликованной в журнале Nature. Они полагают, что большинство современных открытий развивают уже существующие знания.

Вам будет интересно: Каким будет мир с населением 10 миллиардов человек?

Научно-технический прогресс замедлился

В ходе работы авторы проанализировали примерно 45 миллионов научных работ и не менее 3,9 миллионов патентов в период с 1945 по 2010 год. Полученные результаты показали, что с начала этих временных интервалов исследовательские работы и патенты консолидировали или развивали уже имеющиеся знания. При этом больше всего пострадали области естественных наук, таких как химия и физика.

Характер исследований меняется, поскольку постепенные инновации становятся все более распространенными, пишут авторы научной работы.

Научно-технический прогресс замедлился. Научно-технический прогресс замедлился. В будущем эта тенденция, скорее всего продолжится. Фото.


Научно-технический прогресс замедлился. В будущем эта тенденция, скорее всего продолжится

Исследователи обнаружили, что, несмотря на взрывной рост инноваций и научных исследований в последние десятилетия, разработки стали более постепенными и менее разрушительными, замедлив прогресс во многих ключевых областях. Это означает, что может потребоваться больше времени, чтобы сделать те ключевые прорывы, которые значительно продвинут науку вперед.

Читайте также: Стоит ли доверять науке?

Полученные результаты также подчеркивают необходимость переосмысления методов в научных исследованиях и использовать инновации для решения насущных проблем человечества, например изменение климата и освоение космоса. И это несмотря на достижения за последние годы, включая развитие искусственного интеллекта, ядерного синтеза и редактирования генома по мнению авторов нового исследования, эти достижения не противоречат замедлению темпов роста научно-технического прогресса.

Научно-технический прогресс замедлился. Научно-технический прогресс застопорился во многих ключевых областях науки. Фото.

Научно-технический прогресс застопорился во многих ключевых областях науки.

Обнаружение гравитационных волн и разработка вакцин против COVID-19 являются прекрасными примерами новаторской работы, происходящей в то время, когда большинство исследований носят более поэтапный и медленный характер. При этом наблюдаемый упадок прорывных научных открытий вряд ли связан со снижением качества исследований. Но как в том случае объяснить происходящее?

Еще больше интересных статей о последних открытиях в области науки и технологий читайте на нашем канале в Яндекс.Дзен там регулярно выходят статьи, которых нет на сайте!

Причины упадка научно-технического прогресса

Среди причин замедления научно-технического прогресса исследователи выделяют процесс обучения, который стал более длительным и включает в себя масштабный объем знаний. Некоторые эксперты называют сложившуюся ситуацию «бременем исследований» отмечая, что современным ученым приходиться слишком много учиться, из-за чего у них остается не так много времени на грандиозные и прорывные открытия.

Другой причиной также может быть обстановка в академических кругах, которая требует от исследователей публиковать все больше и больше научных статей (по которым эксперты оценивают друг друга). Сегодня многие специалисты и изобретатели вынуждены фокусироваться на узких специализациях, а они редко являются чем-то новаторским.

Причины упадка научно-технического прогресса. XX век подвел итоги развития фундаментальной науки, после чего начался переход к совершенно новой форме существования знания. Фото.

XX век подвел итоги развития фундаментальной науки, после чего начался переход к совершенно новой форме существования знания

Прогресс прекратился более 40 лет назад. Большая часть того, что произошло с тех пор постепенное улучшение. Хотя с этой точкой зрения многие не согласны, отмечают ученые, которые не принимали участие в исследовании

При этом авторы научной работы полагают, что мы не становимся менее инновационными как вид, однако ситуация в которой ученых «заставляют сокращать свои статьи», чтобы увеличить количество публикаций, может привести (и очевидно приводит) к «притуплению научных исследований».

Это интересно: В поисках межзвездных памятников или что останется после нас?

Авторы метаанализа призывают университеты и финансирующие корпорации уделять больше внимания качеству публикаций, а не количеству, а также рассмотреть возможность предоставления годичных академических отпусков, что позволит ученым больше размышлять и пробовать что-то новое.

Социально-экономическое развитие общества

Возможно наибольшим эффектом на развитие науки и технологий обладает экономическая ситуация сегодня прогресс практически полностью направлен на потребителя. Американский экономист Тайлер Коуэн в своем эссе «Великая стагнация» (2011) утверждает, что, по крайней мере, в США достигнуто технологическое плато. Конечно, смартфоны великолепны, но вряд ли их можно сравнить с созданием космических обсерваторий и победой над оспой.

Социально-экономическое развитие общества. Современная наука переживает очередной кризис некогда единое научное пространство фрагментируется. Фото.

Современная наука переживает очередной кризис некогда единое научное пространство фрагментируется

Экономисты описывают этот экстраординарный период в терминах увеличения богатства. После Второй мировой войны мир захлестнул бум научных и технологических инноваций наряду с увеличением продолжительности жизни и ее качества. Еще одной причиной может являться глобальное старение населения, о чем мы рассказывали ранее.

Читайте также: Теорема конца света: как и когда человечество исчезнет с лица Земли?

И все же за последние десятилетия мир сильно изменился то, что считалось нормой в 1945 году (и даже в 1970-х) сегодня кажется неприемлемым, а общество избавилось от огромного количества предрассудков, которые отошли на второй план. Так что будем наблюдать к чему нас приведут ближайшие десятилетия.

Подробнее..

Создан первый в мире лазер-громоотвод, направляющий молнии

19.01.2023 16:05:49 | Автор: admin
Создан первый в мире лазер-громоотвод, направляющий молнии. Первый в своем роде лазерный громоотвод позволит управлять молниями. Фото.

Первый в своем роде лазерный громоотвод позволит управлять молниями

Молния чрезвычайно горячая всего одна вспышка способна нагреть воздух до температуры, в пять раз превышающей температуру поверхности Солнца. Из-за резкого скачка температур окружающий молнию воздух создает раскаты грома, которые мы слышим увидев вспышку. По сути, молния это мощный электрический разряд, возникающий в грозовых облаках. Попав, например, в дерево или дом, она может стать причиной пожара и гибели людей. Так, чтобы обеспечить защиту зданий и их обитателей от подобной участи, почти три столетия назад американский политик и интеллектуал Бенджамин Франклин изобрел молниеотвод. С тех пор эти металлические решетки над зданиями спасли тысячи жизней и критически важных объектов, а в основу всех последующих разработок в этой области легло изобретение Франклина. И все же недавно произошло кое-что интересное инженеры разработали устройство для управления молнией с помощью лазера. Последний, как оказалось, работает как громоотвод, рассеивая атмосферные разряды.

В чем опасность молнии?

По статистике каждую секунду поверхность нашей планеты принимает не менее сотни ударов молний, каждый из которых движется со скоростью более 320 000 километров в час и вырабатывает огромное количество электроэнергии. Удары молний во время грозы создают радиочастотные помехи и скачки напряжения, которые сокращает срок службы электронных устройств.

Так, удары молний ответственны за 20% случаев повреждения электрооборудования в жилых и офисных помещениях, а остальные 80% приходится на скачки напряжения. Но вот что особенно интересно по данным государственной электросетевой корпорации Китая, в 84% случаев повреждения оборудования молниезащита не сработала, хотя сами молниеотводы исправно работают.

В чем опасность молнии? Удары молний серьезная проблема не только для электроники. Фото.

Удары молний серьезная проблема не только для электроники

Это интересно: Шаровая молния самое таинственное природное явление

Причина, как указывают специалисты, заключается в ошибках при установке и обслуживании комплекса устройств по защите от молний. В то же самое время современная молниезащита не может на 100% гарантировать сохранение оборудования после удара.

Помимо угрозы для всех типов электрических и коммуникационных сетей, удары молний опасны для жизни. Исследователи выделяют пять различных способов поражения человека молнией. Так, жертвы прямого удара чаще всего находятся на открытой местности, а часть тока проходит вдоль поверхности кожи и непосредственно над ней, другая часть проходит через тело как правило через сердечно-сосудистую и/или нервную системы.

Подробнее о том, в какие места чаще всего попадают молнии и как от них спастись ранее рассказывал мой коллега Рамис Ганиев, рекомендую к прочтению

Что такое молниеотвод?

Молниезащита (грозозащита или громоотвод) представляет собой комплекс разнообразных мер. Самый известный тип громоотвода называется стержень Франклина проводящий электричество металлический стержень, который перехватывает молнии и направляет их на землю. Чаще всего молниеотвод устанавливают на аэродромах, портах, промышленных зданиях или рядом с ними.

Что такое молниеотвод? Молниеотвод помогает предотвратить накапливание заряда. Фото.

Молниеотвод помогает предотвратить накапливание заряда.

Если говорить совсем просто, то система молниезащиты обеспечивает легкий путь молнии к земле. Каждая часть «стержня Франклина» изготавливается из алюминия или меди и устанавливается в самой высокой точке здания или другой конструкции.

Больше по теме: Интересные и малоизвестные факты о молниях

Громоотводы также соединяются с другими металлическими компонентами например, с телевизионной антенной и нисходящими проводами, соединяющие стержень и систему заземления. Интересно, что устанавливать громоотводы можно на любом количестве зданий и других конструкций.

Что такое молниеотвод? Молния электрический искровой разряд в атмосфере, обычно может происходить во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом. Фото.

Молния электрический искровой разряд в атмосфере, обычно может происходить во время грозы, проявляющийся яркой вспышкой света и сопровождающим её громом.

К слову, деревянные конструкции без «стержней Франклина» подвержены риску возгорания, а пористые или насыщенные водой строительные материалы, такие как кирпич и бетон, могут и вовсе взорваться после удара молнии.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram так вы точно не пропустите ничего интересного!

Может ли лазер защитить от молнии?

Недавно группа ученых из Женевского университета и других исследовательских центров разработала первый в мире лазерный громоотвод. С его помощью, как сообщают авторы изобретения, можно отражать молнии на десятки метров причем даже в плохую погоду. И несмотря на то, что это звучит необычно, в 2004 и 2011 году над ней работали исследователи из разных стран мира. Правда, никаких убедительных доказательств получить так и не удалось.

Теперь мощный лазер, направленный в небо, можно использовать как громоотвод. Дело в том, что мощный лазерный луч, направленный в атмосферу, ионизирует путь, по которому следует молния и фактически направляет ее в определенное место, где ее можно заземлить.

Может ли лазер защитить от молнии? Устройство испытали на горе Санти для защиты 124-метровой телекоммуникационной антенны. Фото.

Устройство испытали на горе Санти для защиты 124-метровой телекоммуникационной антенны.

Читайте также: Можно ли в грозу разговаривать по телефону?

Чтобы доказать работоспособность теории, ученые провели эксперимент на горе Санти на северо-востоке Швейцарии, установив новый громоотвод рядом с телекоммуникационной антенной высотой 124 метра. В результате новое лазерное устройство уловило и перенаправило разряд молнии в небо, предотвратив его попадание в антенну.

Мы потратили год анализируя данные и пришли к выводу, что разряд молнии следует за лучом практически 60 метров прежде чем достигает антенны. Это означает, что лазер увеличивает радиус защитной поверхности со 120 до 189 см, объясняют авторы эксперимента.

Так как удары молнии можно предсказать, исследователи из Федеральной политехнической школы Лозанны (EPFL) разработали систему искусственного интеллекта, дополняющую лазерный громоотвод для прогнозирования вспышек молнии. Новая система позволяет прогнозировать удар за 10-30 минут на площади 30 километров (с погрешностью 20%).

Может ли лазер защитить от молнии? Новое исследование призвано улучшить стратегии молниезащиты жизненно важной инфраструктуры электростанций, аэропортов и стартовых площадок для космических миссий. Фото.


Новое исследование призвано улучшить стратегии молниезащиты жизненно важной инфраструктуры электростанций, аэропортов и стартовых площадок для космических миссий.

И хотя новая модель имеет фундаментальное преимущество над ранее разработанными системами, у ученых впереди много сложной работы. Так, исследователям предстоит понять как именно возникают удары молнии и найти наилучший способ защиты зданий, самолетов, небоскребов и людей.

Не пропустите: В документах XII века найдено самое первое упоминание шаровой молнии

Как управлять молнией

Создатели первого в мире лазерного молниеотвода пришли к выводу о необходимости дополнительных исследований и экспериментов, полученные ими результаты расширяют современное понимание лазерной физики в атмосфере и могут помочь в разработке новых стратегий защиты людей и критически важных объектов инфраструктуры.

Как управлять молнией. В ходе эксперимента за шесть часов работы во время грозовой активности лазер изменил траекторию четырех восходящих грозовых разрядов. Фото.

В ходе эксперимента за шесть часов работы во время грозовой активности лазер изменил траекторию четырех восходящих грозовых разрядов.

А вы знали, что антиматерию охладили почти до абсолютного нуля лазерным лучом? Все подробности здесь, не пропустите!

Полученные результаты также имеют большое значение для изучения климатических изменений удары молнии над горами (в результате глобального потепления) могут спровоцировать ураганы и послужить дополнительной причиной лесных пожаров, которые ранее достигли беспрецедентного уровня. Ученые также надеятся, что их разработка существенно снизит риск поражения молнией в густонаселенных районах мегаполисов.

Подробнее..

Свет ведет себя как частица и волна не только в пространстве, но и во времени

29.04.2023 16:07:52 | Автор: admin
Свет ведет себя как частица и волна не только в пространстве, но и во времени. Результаты нового исследования показали, что свет ведет себя как волна и частица не только в пространстве, но и во времени. Фото.

Результаты нового исследования показали, что свет ведет себя как волна и частица не только в пространстве, но и во времени.

Один из самых странных и известных экспериментов в физике двухщелевой эксперимент, лучше прочих иллюстрирует таинственную природу квантовой механики. Все потому, что свет, воспринимаемый нами как нечто обыденное, может вести себя и как частица и как волна одновременно, что удалось подтвердить экспериментальным путем в 2021 году. Однако первым на этот необычный феномен обратил внимание английский физик и математик Томас Юнг в 1801 году, когда заметил, что при сложении звуковых волн происходит ослабление и усиление звука. Предположив, что свет подобен звуку, Юнг решил провести эксперимент, в ходе которого направил пучок света на непрозрачный экран-ширму с двумя параллельными прорезями, позади которого был установлен еще один, проекционный экран. Ширина прорезей, при этом, была приблизительно равна длине волны излучаемого света. Результатом эксперимента стала интерференционная картина, которая демонстрирует, что фотон как будто проходит через обе щели одновременно. Недавно, однако, ситуация усложнилась изменения, внесенные физиками в классический опыт Юнга, показали, что поведение фотонов меняется в зависимости от… времени.

Классический опыт Юнга

Прежде чем перейти к увлекательным результатам исследования, опубликованного в журнале Nature Physics, обратимся к классическому эксперименту Юнга, а также вспомним основные принципы квантовой механики. Так, по мнению автора этой статьи, читателю будет проще разобраться в происходящем.

Начнем с того, что споры о природе света в академических кругах велись с 18 века. Исаак Ньютон, например, считал, что свет состоит из потока частиц, а голландский физик и астроном Кристиан Гюйгенс, напротив, называл свет волнами, вибрирующими в некоем подобии эфира. Эти догадки основывались на волновой природе звуковых волн, которые распространяются по изогнутым трубам, огибая углы, в отличие от света. Более того, Ньютон заметил, что в воде скорость света менялась, что заставило его привнести в свою теорию необъяснимую силу, способную объяснить это странное явление.

Классический опыт Юнга. Исаак Ньютон был убежден, что свет это частица, а не волна. Фото.

Исаак Ньютон был убежден, что свет это частица, а не волна

Это интересно: Почему квантовая физика сродни магии?

Так как в те годы молодой ученый пользовался большой популярностью, оспорить его теорию никто не решался вплоть до 1801 года. Тогда, как упоминалось выше, Томас Юнг впервые наблюдал интерференцию. Причиной, по которой этот эрудированный ученый с опытом в разных областях науки, включая медицину, заинтересовался светом, стала препарация бычьего глаза, во время которой он размышлял о том, как глаза фокусируются на объектах на разных расстояниях. Впоследствии Юнг предложил теорию цветового зрения.

Юнг также восхищался Ньютоном, однако к 1800 году заметил кое-что неладное в корпускулярной теории. Так, свет вел себя по-разному между воздухом и водой одна его часть отражалась, а вторая преломлялась, что невозможно объяснить теорией Ньютона. Чтобы разобраться в происходящем, Юнг, как и его предшественники, обратился к звуку, заметив, что при пересечении двух звуковых волн, они интерферируют друг с другом. Со временем физик начал понимать, что явление интерференции может быть применимо и к свету.

Напомню, что интерференция возникает, когда два набора волн накладываются друг на друга. Ранее я рассказывала о результатах эксперимента, который показал, что квантовая запутанность существует между разнородными частицами.

Классический опыт Юнга. Свет не так прост, как кажется. Фото.

Свет не так прост, как кажется

В 1801 году, размышляя над экспериментами Ньютона, Юнг выдвинул основную идею знаменитого эксперимента, однако его результаты впоследствии были раскритикованы академическим сообществом. Установка, предложенная Юнгом, в дальнейшем использовалась для демонстрации волновой природы света и способности электронов вести себя как волны и создавать интерференционные картины.

Ситуация изменилась многим позже благодаря становлению квантовой механики, когда физики (во многом благодаря опыту Юнга) перестали сомневаться в двойственной природе света, который, как мы знаем, может вести себя и как волна и как частица одновременно.

ВАЖНО: В 2021 году физики экспериментально подтвердили корпускулярно-волновой дуализм.

Становление квантовой механики

< Квантовая физика изучает устройство мира на микроскопическом уровне. В отличие от классической физики, сосредоточенной на исследовании макромира (включая космос и небесные тела), эта область исследований сконцентрирована на атомах крошечных кирпичиках мироздания, увидеть которые невооруженным глазом невозможно. Но это лишь малая часть странностей, встречающихся на пути ученых. Учитывая специфический характер квантовой механики, ее основателями были многие выдающиеся ученые, включая физика-теоретика Макса Планка, «отца» атома Нильса Бора, создателя Общей теории относительности (ОТО) Альберта Эйнштейна, физика Вернера Гейзенберга и многих других знаменитых деятелей науки. Все потому, что разобраться в происходящем было невероятно сложно.

Становление квантовой механики. Перед вами первый в истории снимок света и как волны, и как частицы. Фото сделано в лаборатории Фабрицио Карбоне (Fabrizio Carbone) в Федеральной политехнической школе Лозанны. Фото.

Перед вами первый в истории снимок света и как волны, и как частицы. Фото сделано в лаборатории Фабрицио Карбоне (Fabrizio Carbone) в Федеральной политехнической школе Лозанны

Больше о других не менее странных явлениях квантовой механики читайте в нашей статье "Тайны квантовой механики что такое квантовая запутанность?"

И все же первенство в создании современной квантовой теории принадлежит немецкому физику Максу Планку, который опубликовал новаторское исследование, продемонстрировав, что энергия в определенных ситуациях может проявлять характеристики физической материи. Отметим, что в те годы энергия считалась исключительно непрерывным волнообразным явлением, независимым от характеристик физической материи.

Теория Планка, напротив, утверждала, что энергия состоит из компонентов, похожих на частицы или кванты. Его работа помогла разрешить ранее необъяснимые природные явления, включая поглощение света на атомном уровне, за что в 1918 году он был удостоен Нобелевской премии по физике.

Затем Эйнштейн, Бор, Луи де Бройль, Шредингер и Дирак развили теорию Планка, подарив миру квантовую механику математическое приложение квантовой теории, согласно которому энергия является одновременно и материей и волной и зависит от рядя переменных. Таким образом, квантовая механика придерживается вероятностного взгляда на устройство мироздания, что сильно отличается от механики классической, в которой все точные свойства объектов поддаются вычислению.

Становление квантовой механики. Перед вами фото, сделанное в 1927 году в ходе V Сольвеевского конгресса. Все 29 участников до неузнаваемости изменили мир. Фото.

Перед вами фото, сделанное в 1927 году в ходе V Сольвеевского конгресса. Все 29 участников до неузнаваемости изменили мир.

Сегодня квантовая механика и теория относительности являются основой современной физики и... ее главной проблемой. Подробнее о том, почему ОТО противоречит квантовой механике и что это означает для современной науки читайте в статье "Может ли квантовая механика объяснить существование пространства-времени?", рекомендую!

Как квантовая механика изменила мир?

Сегодня о «таинственной» квантовой физике не слышал разве что ленивый, так как ее используют для объяснения самых разных и даже не существующих явлений. Что неудивительно, ведь вряд ли в мире найдется ученый, который полностью понимает устройство Вселенной на микроуровне. Квантовая механика, тем не менее, окончательно и бесповоротно изменила мир, способствуя развитию и становлению современной цивилизации. Чтобы внести некоторую ясность и обосновать громкие заявления, перечислим основные достижения этой научной дисциплины.

  • Компьютеры и смартфоны это ярчайший пример того, что подарила миру квантовая механика. Все потому, что работа современной электроники на основе полупроводников зависит от волновой природы электронов. И поскольку мы понимаем эту волновую природу, то можем манипулировать электрическими свойствами кремния для создания компьютерных чипов: получить их можно смешивая крошечные доли необходимых элементов друг с другом.
  • Как квантовая механика изменила мир? Вы читаете эту статью благодаря квантовой механике. Фото.

    Вы читаете эту статью благодаря квантовой механике

    Компьютерные чипы питают и приводят в действие настольные компьютеры, ноутбуки, планшеты, смартфоны и даже мелкую бытовую технику. Без детального понимания квантовой природы материи создать их было бы невозможно.

  • Лазеры и телекоммуникации: в классических волоконно-оптических телекоммуникациях, используемых для передачи сообщений по волоконно-оптическим кабелям, источниками света являются квантовые устройства лазеры. Да-да, каждый раз, когда вы делаете телефонный звонок, то прямо или косвенно используете лазер, или, если хотите, саму квантовую физику.
  • Как квантовая механика изменила мир? Лазеры это генераторы и усилители когерентного излучения в оптическом диапазоне. Фото.

    Лазеры это генераторы и усилители когерентного излучения в оптическом диапазоне

    Ключевой принцип лазера описан Эйнштейном в 1917 году в работе о статистике фотонов (хотя сам термин был введен позже) и их взаимодействии с атомами. Результатом этого взаимодействия является индуцированное (или когерентное) излучение, при котором оба фотона грубо говоря "клонируют" друг друга, т. е. имеют одинаковые частоту, фазу и направление.

  • С помощью навигационных систем GPS, подключенных к Интернету, можно проложить путь в любое незнакомое место. Все потому, что навигацию на смартфонах обеспечивает глобальная система позиционирования сеть спутников, каждый из которых передает сигнал, принимаемый GPS-навигатором, определяющим местоположение с точностью до нескольких метров. Работа GPS основана на постоянной скорости света для преобразования времени в расстояние.
  • Как квантовая механика изменила мир? Каждый раз, когда вы пользуетесь смартфоном, чтобы добраться из пункта А в пункт Б, благодарите за него квантовую механику. Фото.

    Каждый раз, когда вы пользуетесь смартфоном, чтобы добраться из пункта А в пункт Б, благодарите за него квантовую механику

    Для точной и синхронизированной работы спутниковой системы, в каждый из них встроены атомные часы, работающие благодаря принципам квантовой механики. "Тиканье" часов это колебание микроволн, которое приводит к переходу между двумя определенными квантовыми состояниями в атоме цезия (или рубидия, в некоторых часах).

Удивительно, правда? Несмотря на то, что квантовая физика загадочна и непостижима, представить повседневную жизнь без нее попросту невозможно.

Современный опыт Юнга

Томас Юнг провел свой знаменитый эксперимент без малого 222 года назад. По этой причине современный опыт выглядит несколько иначе физики пропускают излучение отдельных частиц света или материи через две щели или отверстия, вырезанные в непрозрачном барьере. По другую сторону барьера находится экран, который регистрирует прибытие частиц.

Результат эксперимента, несмотря на модернизацию, не меняется: вместо того, чтобы пройти через ту или иную щель и накапливаться за каждой из них, фотоны переходят в определенные части экрана и избегают друг друга, что приводит к созданию чередующихся полос света и тьмы, то есть к интерференции. Так, однако, происходит не всегда оказалось, что в любой момент времени через аппарат проходит только один фотон.

Современный опыт Юнга. Поведение фотонов меняется когда мы просто наблюдаем за ходом эксперимента. Реальность намного сложнее, чем кажется. Фото.

Поведение фотонов меняется когда мы просто наблюдаем за ходом эксперимента. Реальность намного сложнее, чем кажется.

Это кажется нелогичным, но если посмотреть на фотон с математической точки зрения, приняв его за волновую функцию (абстрактную математическую функцию, представляющую состояние фотона/его местоположение), как все встает на свои места. Дело в том, что волновая функция ведет себя как волна а значит фотон попадает в обе щели. В результате новые волны исходят из каждой щели с другой стороны, распространяются и мешают друг другу.

Читайте также: Нобелевская премия по физике 2022: квантовая запутанность и телепортация

Таким образом мы можем сформулировать основную идею эксперимента с двумя щелями даже если пропускать фотоны через обе щели по одному за раз, то он все равно будет вести себя как волна, создавая интерференционную картину. Вот только эта волна вероятность, поскольку ученые не знают, через какую из двух щелей пройдет тот или иной фотон. Проблема заключается в том, что когда ученые пытаются определить какой именно фотон проходит через конкретную щель, интерференционная картина не возникает (что бы ученые не делали).

Эксперимент с отложенным выбором

Отметим, что в квантовой механике существует целый ряд классических двухщелевых экспериментов, включая эксперимент «с отложенным выбором» (так называемый «квантовый ластик с отложенным выбором»). Несмотря на странное название, идея достаточно проста испускаемые лазером фотоны попадают на двухщелевую пластину, за которой находится нелинейный оптический кристалл, который разбивает один фотон на пару запутанных фотонов (подробнее прочитать об этом явлении можно здесь).

Цель эксперимента заключается в формировании стандартной интерференционной картины, которую должен создать один из фотонов, а его «партнер» направиться к детектору. Этого, однако, не происходит: даже если второй фотон можно обнаружить после того, как первый попадает на экран, интерференционный картины не возникает.

Эксперимент с отложенным выбором. Классический опыт Юнга, описание. Фото.

Классический опыт Юнга, описание

Теоретически это означает, что наблюдение за фотоном может изменить события, которые уже произошли. Вот только как именно все это работает по-прежнему неизвестно, а значит перед нами одна из величайших загадок квантовой механики.

А вы знаете, что существуют разные интерпретации квантовой механики? Например, известно ли вам, что такое интерпретация Эверетта?

Как свет ведет себя во времени и пространстве?

Не прекращая попытки установить причину странного поведения фотонов, физики из Имперского колледжа Лондона опубликовали результаты инновационной работы в журнале Nature Physics, продемонстрировав, что опыт Юнга справедлив не только в отношении пространства, но и времени. В первоначальном эксперименте световые волны проходили через узкие промежутки в физическом пространстве, но в новой вариации физики использовали специальный материал, меняющий степень отражения света.

Когда на тонкий слой оксида индия электропроводящего прозрачного материала, который регулярно используется в сенсорных экранах смартфонов попадает интенсивный лазерный импульс, то он на крошечную долю секунды становится зеркалом. Этот материал, как говорится в работе, чрезвычайно быстро меняет свою отражательную способность, что сравнимо с частотой колебаний света.

Если бы вся история Вселенной от Большого взрыва до момента, когда вы читаете эту статью, длилась секунду, колебание света было бы равнозначно одному дню. Скорость переключения зеркал-щелей оказалась феноменальной считаные фемтосекунды, объясняет ведущий автор статьи Ромен Тироль.

Как свет ведет себя во времени и пространстве? Группе физиков удалось воссоздать двухщелевой эксперимент, который доказал волновую природу света во времени. Фото.

Группе физиков удалось воссоздать двухщелевой эксперимент, который доказал волновую природу света во времени.

Если говорить совсем просто, то физики смогли наблюдать процессы интерференции света во времени после прохождения щелей световые волны то усиливали, то гасили друг друга (точно так же, как это происходит в классическом эксперименте Юнга). Однако на этот раз интерференция происходила на шкале времени.

Таким образом, 222 года спустя, ученые доказали, что свет ведет себя как частица и волна не только в пространстве, но и во времени.

Мы также узнали о существовании более точных способов измерения оптического отклика среды, а результаты исследования в будущем могут привести к созданию новых вычислительных технологий и спектроскопии (что пригодится при изучении черных дыр и других астрофизических явлений). Помимо теоретической и концептуальной ценности, подобные эксперименты продолжают служить источником новых знаний и проводятся для разных типов волн, включая электронные, звуковые и др.

Как свет ведет себя во времени и пространстве? Только представьте какое влияние новое открытие может оказать на вычислительную мощность квантовых компьюетров. Фото.

Только представьте какое влияние новое открытие может оказать на вычислительную мощность квантовых компьюетров

Мы также не можем исключать и других последующих открытий, к которым сегодня никто не решается приступить. В конечном итоге мы слишком мало знаем о природе Вселенной, в которой неизученных областей намного больше, чем можно себе представить. А как вы думаете, к чему могут привести дальнейшие эксперименты в области квантовой физики? Ответ, как и всегда, будем ждать в нашем Telegram-чате, спасибо за внимание!

Подробнее..

Согласно законам физики пчелы не должны уметь летать правда или миф?

30.05.2023 18:02:22 | Автор: admin
Согласно законам физики пчелы не должны уметь летать: правда или миф? В 1930-е годы ученые решили, что пчелы слишком большие, чтобы уметь летать. Где они совершили ошибку? Фото.

В 1930-е годы ученые решили, что пчелы слишком большие, чтобы уметь летать. Где они совершили ошибку?

В Интернете можно найти утверждение, что согласно законам физики, пчелы и шмели не должны уметь летать. В некоторых источниках говорится, что в научном центре NASA даже висит плакат с надписью о том, что аэродинамическое тело пчелы не приспособлено летать, но хорошо, что пчела об этом не знает. Существует такой плакат на самом деле или нет, точно сказать невозможно, однако предположение что жужжащие насекомые нарушают законы физики действительно есть оно было выдвинуто в первой половине 20 века. Ученые тех времен обратили внимание, что пчелы имеют настолько крупные тела, что их крошечные крылья не способны создать достаточную подъемную силу. Правда ли это, или ученые ошиблись в своих расчетах?

Почему пчелы не умеют летать

История гласит, что предположение о неспособности пчел летать появилось в 1930-е годы, во время беседы биолога и специалиста по аэродинамике. Первый спросил, не кажется ли его собеседнику странным, что крупные насекомые летают при помощи маленьких относительно их тела крыльев. Эксперт по аэродинамике сделал несколько быстрых расчетов и объявил, что исходя из веса пчелы и площади ее крыльев, она не должна уметь летать это противоречит законам физики.

В некоторых источниках говорится, что отрицателем летательной способности пчел является Людвиг Прандтль немецкий механик и физик, который внес огромный вклад в основы гидродинамики и разработал теорию пограничного слоя. Другая версия гласит, что автором предположения является швейцарский ученый Якоб Аккерет, который тоже работал в области аэродинамики и известен как один из главных экспертов в воздухоплавании 20 века. Но, скорее всего, авторами расчетов были французский энтомолог Антуан Маньян и математик Андре Сент-Лагю.

Почему пчелы не умеют летать. Ученые решили, что пчелы не должны уметь летать потому, что в первой половине 20 века очень мало знали об особенностях полета насекомых. Фото.

Ученые решили, что пчелы не должны уметь летать потому, что в первой половине 20 века очень мало знали об особенностях полета насекомых

Итак, ученые пришли к выводу, что пчелы не должны уметь летать. Однако, их расчеты с самого начала были ошибочными, потому что все происходило во времена, когда наука не была так хорошо развита, как сейчас. В тридцатые годы прошлого столетия ученые не могли разглядеть как именно насекомые машут крыльями. Поэтому расчеты велись так, как будто насекомые летают как самолеты с жесткими крыльями.

Интересный факт: самый первый самолет в мире назывался Флайер 1 и был создан в 1903 году братьями Уилбером и Орвиллом Райт. На сегодняшний день одна часть этого летательного аппарата находится на Марсе.

Как летают самолеты

Самолеты с жесткими крыльями летают совершенно не так, как насекомые. Они держатся в воздухе за счет разного давления над крыльями и под ними оно возникает за счет того, что нижняя часть каждого крыла ровная, а верхняя имеет выпуклость. Когда самолет летит, его крылья буквально разделяет воздушный поток на две части. За счет выпуклости, скорость верхнего потока увеличивается, а нижний поток остается таким же. В результате этого, давление на самолет сверху снижается, а снизу увеличивается. Летательное средство будто бы плывет по воздуху.

Как летают самолеты. На летательную способность самолета также сильно влияет угол атаки крыла. Фото.

На летательную способность самолета также сильно влияет угол атаки крыла

Как летают насекомые

В отличие от самолетов, пчелы и другие насекомые имеют гибкие крылья. Они не только махают ими вверх и вниз, но и совершают круговые движения. В результате под ними образуется вихрь воздуха, который и позволяет маленьким крыльям поднимать массивные тела пчел и шмелей. Благодаря сверхточным камерам было выяснено, что пчелы способны совершать до 250 взмахов крыльями в секунду и лететь со скоростью до 65 километров в час. Когда человек видит пчел и шмелей в процессе опыления растений, они могут показаться неторопливыми созданиями. Но, на самом деле, они могут демонстрировать впечатляющую быстроту.

Полет пчелы в замедленном действии

В конечном итоге получается, что утверждение о том, что пчелы нарушают законы физики и на самом деле не должны уметь летать это миф, который был порожден ошибочными вычислениями.

Если хотите еще больше любопытных статей, подпишитесь на наши каналы в Дзен и Telegram. Будьте уверены, что не разочаруетесь!

Напоследок стоит отметить, что ученые до сих пор узнают о пчелах много интересного. Например, в 2022 году ученые провели научный эксперимент и выяснили, что шмели любят развлекаться с игрушками так же, как и многие другие виды животных вроде собак и кошек. Если дать им небольшой шарик, они хватаются за них лапками и катаются на них верхом. Если хотите узнать подробности об этом исследовании, читайте статью моего коллеги Андрея Жукова Пчелы любят играть с игрушками?.

Подробнее..

Физики работают над новой теорией гравитации какую роль в ней играет темная материя?

14.03.2024 22:09:47 | Автор: admin
Физики работают над новой теорией гравитации какую роль в ней играет темная материя? Может ли новая теория гравитации ответить на величайшие загадки космологии? Фото.

Может ли новая теория гравитации ответить на величайшие загадки космологии?

История человечества настоящая сага с множеством действующих лиц. Веками мы ищем ответы на вопросы о том, кто мы, откуда пришли и куда движемся. По мере развития науки и технологий вопросов стало больше но и узнали мы немало. Оказалось, что наша планета крошечная голубая точка, вращающаяся вокруг самой обычной звезды, коих не счесть на просторах Вселенной. И чем больше мы узнаем о небесных объектах и устройстве космоса, тем меньше понимаем происходящее. Так, две ведущие физические теории общая теория относительности (ОТО) и квантовая механика идеально работают по-отдельности, но вместе нет. Более того, мы изучаем далекие галактики в попытках понять устройство мироздания и вводим разные переменные, например, темную материю, призванную объяснить величайшие загадки. Вот только доказательств ее существования по-прежнему нет, как нет и новой физической теории. Но почему и стоит ли ожидать революции в космологии? Давайте разбираться!

Что не так с космологией?

О том, что космология находится в кризисе, кажется, знают все. Причина кроется в несоответствии постоянной Хаббла. Это означает, что либо ученые делают что-то не так, либо на просторах Вселенной происходит нечто неведомое.

Постоянная Хаббла число, которое астрономы используют для измерения расширения Вселенной. Впервые о нем сообщил американский астроном Эдвин Хаббл, который обнаружил другие галактики за пределами Млечного Пути и пришел к выводу, что они постоянно удаляются от нас. Однако скорость, с которой это происходит (и почему) загадка. Да что уж там, каждый раз изучая вращение далеких галактик ученые приходят в недоумении.

Что не так с космологией? Наша Вселенная расширяется с ускорением, что на самом деле довольно странно. Фото.

Наша Вселенная расширяется с ускорением, что на самом деле довольно странно

Дело вот в чем звезды внутри галактик удерживаются вместе гравитацией силой тяжести которая предотвращает их выброс в межгалактическое пространство при вращении. Загадка же кроется в том, что самые удаленные части галактик движутся слишком быстро при этом не теряя звезд. Тот факт, что светила не выбрасываются в межзвездное пространство поражает астроном и является одной из величайших космологических загадок. Какая-то сила, должно быть, удерживает галактики вместе, но что это за сила и откуда она берется неизвестно.

Вам будет интересно: Могут ли гравитационные волны разрешить кризис космологии?

На данный момент лучшее объяснение происходящему звучит так темная материя, оказывающая гравитационное воздействие на все небесные тела. Поиск этой таинственной материи является одним из ведущих направлений исследований, но несмотря на годы изучения и достижения, обнаружить доказательства существования темной материи до сих пор не удалось.

Новые идеи

К счастью, исследователи смотрят в разных направлениях пока одни занимаются темной материей, другие ищут альтернативные причины наблюдаемых космологических «проблем». Так, еще в 1980-х годах физик по имени Мордехай Милгром предположил, что в галактическом масштабе законы движения Ньютона могут незначительно отличаться от тех, которые наблюдаются на Земле.

По Милгрому, эта модифицированная ньютоновская динамика (MOND), может обеспечить дополнительную гравитационную силу, удерживающую галактики вместе. Но, как и в случае с темной материей, свидетельств в поддержку этой идеи крайне мало.

Новые идеи. Астрономы склоняются в пользу идеи темной материи. Но что, если они ошибаются? Фото.

Астрономы склоняются в пользу идеи темной материи. Но что, если они ошибаются?

Различные исследования рассматривали то, какое влияние MOND может оказывать на орбиты удаленных объектов, таких как Плутон или космические аппараты «Пионер» и «Вояджер», но обнадеживающих результатов не последовало. Более того, многим астрономам эта идея не нравится, так как представляет собой, по сути, произвольную интерпретацию ньютоновской динамики (собственно вот она причина повсеместного интереса к темной материи).

Еще больше интересных статей в области космологии и физики читайте на нашем канале в Яндекс.Дзен там регулярно выходят статьи, которых нет на сайте!

Теперь же, ситуация может измениться все благодаря работе Джонатана Оппенгейма и Андреа Руссо из Университетского колледжа Лондона, которые выяснили, почему идея MOND Милгрома все-таки может быть верной. Работа, пока что не прошедшая экспертной оценки, дает MOND теоретическую основу, которая повышает привлекательность теории для астрономов и физиков.

Хорошо забытое старое

Исследование, опубликованное на сервере препринтов AiRXiv, основано на идее, которую Оппенгейм выдвинул несколько лет назад, чтобы примирить несовместимость между двумя великими основами современной физики: квантовой механикой и общей теорией относительности. Напомним, что квантовая механика объясняет устройство Вселенной в мельчайших масштабах, в то время как ОТО в самых больших масштабах.

И, как мы уже не раз рассказывали, характер обеих теорий совершенно противоположен: квантовая механика предполагает, что Вселенная вероятностна по своей природе, в то время как ОТО подразумевает, что она полностью классическая. Эта несостыковка создает дилемму, когда дело доходит до создания теории квантовой гравитации, которую физикам только предстоит разработать.

Хорошо забытое старое. Квантовая гравитация направление исследований в теоретической физике, целью которого является квантовое описание гравитационного взаимодействия. Фото.

Квантовая гравитация направление исследований в теоретической физике, целью которого является квантовое описание гравитационного взаимодействия.

Подробнее о квантовой гравитации мы рассказывали здесь, не пропустите!

Идея Оппенгейма в том, что ОТО классическая теория, но в своей основе, однако, стохастическая то есть имеет случайный характер, скорее похожий на броуновское движение случайное движение частицы, взвешенной в жидкости. Такое видение позволяет объединить квантовую механику и теорию относительности математически совместимым образом.

Из этого «хорошо забытого» подхода также следует, что гравитация для нас с вами работает именно так, как описал Ньютон (и как наблюдают физики). А вот в галактических масштабах ускорение, обусловленное гравитацией, может изменяться на небольшую, но случайную величину, как если бы пространство-время вызывало какое-то броуновское движение масс внутри него.

Хорошо забытое старое. Мы, возможно, неправильно понимаем гравитацию главную движущую силу Вселенной. Фото.

Мы, возможно, неправильно понимаем гравитацию главную движущую силу Вселенной

Мы показываем, что стохастическая природа пространства-времени порождает дополнительную гравитационную силу, удерживающую галактики вместе. Энтропия, управляемая стохастической космологической постоянной, может объяснить кривые вращения галактик, а значит привлекать темную материю не нужно, пишут авторы научной работы.

Темная материя больше не нужна?

Идея Милгрома (и авторов нового исследования) может оказаться необходимым следствием объединения теории относительности и квантовой механики в единую структуру. Как минимум эту идею следует рассмотреть всерьез и провести ряд научных экспериментов, проверяющих природу ньютоновской динамики.

Авторы работы, все же, призывают быть осторожными, указывая, что помимо вращения галактик есть и другие причины предполагать существование темной материи. Например, гравитационная масса далеких галактик действует подобно линзе, преломляя проходящий мимо свет. И размер этого изгиба предполагает, что темная материя должна вносить свой вклад в эту массу.

Темная материя больше не нужна? Физики применяют широкий спектр подходов к очень сложным проблемам, таким как объединение квантовой механики с гравитацией. И это очень хорошо. Фото.

Физики применяют широкий спектр подходов к очень сложным проблемам, таким как объединение квантовой механики с гравитацией. И это очень хорошо

Таким образом, прежде чем новая, альтернативная идея получит распространение, ее необходимо тщательно и подробно изучить, в частности, путем компьютерного моделирования броуновского движения пространства-времени и его влияния на массу. Ну а речь о полном отказе от темной материи не идет и вовсе.

Читайте также: Астрофизики обнаружили мосты из темной материи. Что это такое?

Выходит, у астрономов прибавилось работы, ведь помимо поисков темной материи как в космосе, так и на Земле, внимание придется уделить и идее Милгрома. Но именно так работает наука чем более открыто и непредвзято мы смотрим на Вселенную, тем больше шансов узнать еще несколько ее тайн.

Подробнее..

Обнаружены новые элементарные частицы. Почему это важно?

24.06.2022 16:14:05 | Автор: admin

Обнаружены новые элементарные частицы. Неужели новая физика маячит на горизонте?

Мы — часть Вселенной. И это не просто слова. Каждое живое существо на нашей планете состоит из крошечных, невидимых глазу элементарных частиц. То же касается всей видимой материи, которую астрономы наблюдают с помощью телескопов. К счастью, для изучения атомов не нужно отправляться в космическое путешествие физики прекрасно справляются с этой задачей на Земле. Например, с помощью Большого адронного коллайдера (БАК) ускоряя частицы и дробя материю на атомы. Так, за последние годы мир узнал о существовании самых разных частиц бозона Хиггса, тетракварков и энионов. Все эти частицы создают реальный мир и могут многое рассказать об устройстве Вселенной, например, о таинственной темной материи, увидеть которую никому не удалось. Недавно исследователи сообщили об открытии «кузена» бозона Хиггса, а также об аномалиях, предположительно вызванных стерильными нейтрино.

Нейтрино загадочные квантовые частицы, массу которых трудно измерить. Нейтрино удивительны, так как масса, которую они содержат, не учитывается в Стандартной модели элементарных частиц, описывающей субатомный мир.

Мир элементарных частиц

Общая теория относительности (ОТО) с невероятной точностью описывает законы физики как на Земле так и в космосе. Эйнштейн также предсказал существование гравитационных волн и черных дыр, правда, он считал, что их обнаружение невозможно. Но несмотря на открытия последних лет, ОТО не может описать Вселенную целиком.

Масла в огонь подливает квантовая механика фундаментальная физическая теория, которая описывает природу в масштабе атомов и субатомных частиц. Считается, что они пронизывают Вселенную и формируют фундаментальные силы природы.

Интересный факт
Основная проблема построения научной теории всего состоит в том, что квантовая механика и общая теория относительности (ОТО) имеют разные области применения. Квантовая механика в основном используется для описания микромира, а общая теория относительности применима к макромиру.

Существует четыре фундаментальных силы или взаимодействия гравитация, электромагнетизм, сильное и слабое ядерные взаимодействия. В совокупности они составляют основу известных природных явлений.

Напомним, что Стандартная модель элементарных частиц описывает электромагнитное, слабое и сильное взаимодействие. Фотоны, например, опосредуют электромагнетизм, а крупные частицы, такие как W и Z-бозоны, опосредуют слабое ядерное взаимодействие, которое управляет ядерным распадом на субатомном уровне.

Но чем больше физики погружаются в изучение микромира, тем больше у них возникает вопросов. И особенно о нейтрино самых распространенных в природе частицах, увидеть которые нельзя. Большинство нейтрино поступают от Солнца, но некоторые образуются в верхних слоях атмосферы. Словом, современная физика пока не может описать Вселенную целиком.

Больше по теме: Физики доказали существование энионов третьего царства частиц

Стерильные нейтрино

Итак, сегодня мы знаем о существовании трех типов или разновидностей нейтрино: электронные, мюонные и тау-нейтрино. Многие исследователи полагают, что существует четвертый аромат стерильные нейтрино.

Свое название эти частицы получили исходя из предположения о том, что они взаимодействуют с другими частицами исключительно за счет гравитации. А вот оставшиеся три разновидности могут объяснить природу темной материи.

Нейтрино входит в число самых распространенных частиц во Вселенной, но поймать их сложно. Так как у этих частиц практически нет массы и электрического заряда. Отследить их можно только по слабому ядерному взаимодействию.

Темная материя таинственная невидимая и неуловимая субстанция, на долю которой приходится 85% всей материи во Вселенной. В то же самое время одними из возможных частиц, составляющих темную материю, могут быть стерильные нейтрино.

Особое отношение физиков к нейтрино обусловлено их странными свойствами электронное нейтрино может превратиться в тау- или мюонное нейтрино, и наоборот. Это объясняет интересный квантомеханический эффект под названием нейтринные осцилляции когда один вид нейтрино превращается в другой, или же становится антинейтрино.

Поисками нейтрино ученые занимаются по всему миру

Ряд аномалий, выявленных еще в 1990-х годах во время экспериментов по изучению нейтрино, подтвердила работа 2002 года, а также исследования последних лет. К тому же новый эксперимент, проведенный глубоко под землей, также зафиксировал наличие аномалий, Так что либо стерильные нейтрино действительно существуют, либо все наши знания физики ошибочны.

Еще больше интересных статей читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте

Осевой бозон Хиггса

Существование бозона Хиггса было предсказано в 1964 году физиком-теоретиком Питером Хиггсом, но обнаружить частицу удалось лишь на Большой адронном коллайдере (БАК) десять лет назад. Считается, что именно бозон Хиггса придает массу всем остальным частицам Стандартной модели и фактически ее подтверждает.

Но недавно физики из Бостонского университета сообщили об обнаружении родственной бозону Хиггса частицы так называемой осевой бозон Хиггса. К такому выводу исследователи пришли без помощи БАК, что удивительно. Более того, наличие у «частицы Бога» родственника свидетельствует о недостатках современной физической теории, включая неточность Стандартной модели элементарных частиц.

Кстати, обнаружить «кузена» бозона Хиггса удалось в ходе настольного оптического эксперимента, который проводился на обычном столе, сообщает Live Science.

Большой адронный коллайдер позволил обнаружить частицы, существование которых предсказывали десятилетия назад

Стандартная модель включает два типа частиц: бозоны, к которым относятся глюоны и гравитоны; и фермионы, которые составляют материю и включают в себя нейтрино, электроны и кварки. Однако поиски частиц, способных полностью объяснить природу Вселенной, частенько заводят физиков в тупик. Так что исследователи ожидают новый запуск БАК после почти трехлетнего перерыва и надеются обнаружить больше частиц, что скрываются на просторах Вселенной.

Читайте также: Физики получают все больше доказательств существования новой, неизвестной силы природы

Стандартная модель навсегда

По словам авторов научной работы, опубликованной в журнале Nature, осевой бозон Хиггса создает магнитное поле. А еще эта частица может являться частью темной материи, из которой состоит большая часть Вселенной.

Чтобы обнаружить таинственную частицу ученые использовали редкоземельный трителлурид квантовое вещество с двухмерной кристаллической структурой. В нем электроны самоорганизуются в волну, в которой плотность заряда периодически увеличивается или уменьшается.

Бозон Хиггса частица, которая переносит взаимодействие между другими частицами и имеет инертную массу

По словам исследователи, осевой бозон Хиггса возник, когда в квантовом веществе при комнатной температуре имитировали определенный набор волн. Для дальнейшего наблюдение за новой частицей физики использовали рассеивание света.

Изначально мы просто исследовали светорассеивающие свойства этого вещества. Но потом обнаружили аномальные изменения, которые намекали на существование чего-то нового, объясняют авторы научной работы.

Самое главное в этой истории заключается в том, что появление осевого бозона Хиггса все еще согласуется со Стандартной моделью элементарных частиц. Теоретически, новый бозон Хиггса может объяснить существование темной материи. Правда, для этого нужна новая теория, которая согласовывалась бы с существующими экспериментами и еще не обнаруженными частицами. Так что говорить о новой физике пока рано.

Не пропустите: Физика частиц и новейшие технологии: что нас ждет в ближайшие 10 лет?

Ученые из ЦЕРН стоят на пороге открытия новой физики

С другой стороны ряд ранее опубликованных исследований свидетельствует об аномалиях и обнаружении новой силы природы. Подробнее о том, что эта за сила и почему физика стоит на пороге перемен мы рассказывали здесь, рекомендуем к прочтению.

Подробнее..

Существует ли реальность без наблюдателя?

27.07.2022 02:17:49 | Автор: admin

Простое наблюдение явления неизбежно изменяет его

Из чего состоит реальность? Ответ на этот вопрос, вероятно, сокрыт в квантовой механике разделе физики, который описывает Вселенную на уровне элементарных частиц и их взаимодействий друг с другом. Знакомство с квантовым миром следует начинать с фундаментальных безмассовых частиц фотонов, которые способны вести себя и как частица и как волна (но не одновременно). Этот принцип известен как корпускулярно-волновой дуализм, а в его основе лежат идеи Исаака Ньютона. В ХХ веке их развитие представил физик-теоретик Макс Планк, а усилия Нильса Бора (еще одного основоположника квантовой механики) привели к постулированию принципа дополнительности, согласно которому решающим звеном наблюдаемой картины является наблюдатель. Если он измеряет свойства квантового объекта как частицы, то свет ведет себя как частица и наоборот. Но почему? И что поведение крохотных частиц говорит о нашей реальности?

Дуализм и эффект наблюдателя

Днем рождения квантовой механики считается 14 декабря 1900 года. В этот день на заседании Берлинского физического общества будущий лауреат Нобелевской премии Макс Планк ввел понятие кванта неделимой порции определенной величины (преимущественно энергии). Это фундаментальное открытие квантовых свойств теплового излучения положило начало многочисленным дискуссиям о природе света, который долгое время считался самой большой загадкой физики.

Широкое обсуждение свойств света в конечном итоге привело к формулировке принципа корпускулярно-волнового дуализма, а также эффекта наблюдателя. О последнем говорил еще в 1801 году Томас Юнг, после того, как провел свой знаменитый эксперимент.

Опыт Юнга конструкция с двумя узкими щелями, через которые проходили лучи света и попадали на лист бумаги, охватывая его целиком. Темные и светлые полосы, которые в результата эксперимента увидел Юнг, означали наличие у света интерференции явления, при котором световые волны накладываются друг на друга и приводят к перераспределению интенсивности света.

Двухщелевой опыт демонстрирует, что свет и материя в целом могут проявлять характеристики как классических волн, так и частиц

Это интересно: Корпускулярно-волновой дуализм подтвердили экспериментально. Что это значит?

В ходе работы Юнг обнаружил, что даже пассивное наблюдение за квантовыми объектами фактически может изменить результат измерения. Так миру явился эффект наблюдателя, причиной которого является двойственная природа элементарных частиц, а наше представление о реальности с тех самых пор буквально трещит по швам.

Квантовый друг

Итак, существование разнообразных объектов (и даже самой Вселенной) зависит от наблюдателя, что кажется безумием. Однако на квантовом уровне все действительно так реальности не существует, если мы на нее не смотрим. В жизни все, разумеется, иначе Луна, например, никуда не исчезнет если на нее не смотреть.

Частицы могут находиться в нескольких местах или состояниях одновременно. Эту особенность физики называют квантовой суперпозицией.

В 1961 году физик Юджин Вигнер провел интересный мысленный эксперимент. Он хотел понять что произойдет если применить квантовую механику к наблюдателю, за которым наблюдают. Представим, что в закрытой лаборатории находится Вигнер и его друг, который подбрасывает квантовую монету. Каждый раз монета может упасть как орлом, так и решкой, а значит каждый раз ученые будут наблюдать определенный результат.

Кстати, парадокс Вигнера представай являет собой усложненный эксперимент кота Шредингера.

Позже, когда Вигнер и его друг сравнят записи, друг будет настаивать на том, что видел определенные результаты после каждого броска. Сам Вигнер, однако, не сможет с ним согласиться, так как наблюдал и друга и монету в суперпозиции.

Больше по теме: Парадокс Вигнера: что нужно знать о двойственности реальности?

Из этой головоломки следует, что реальность, воспринимаемая другом, не согласуется с реальностью Вигнера. Первое время физик не считал это большим парадоксом, утверждая, что описывать наблюдателя как квантовый объект попросту абсурдно. И все же со временем он поменял свою точку зрения.

Кстати, по мнению Эйнштейна квантовые состояния имеют собственную реальность вне зависимости от воздействия на них человека. Его коллега и оппонент, выдающийся физик Нильс Бор и вовсе считал, что предсказать ход дальнейших событий в квантовой реальности невозможно.

Формирует ли наблюдатель реальность?

Еще интереснее выглядят результаты работы, опубликованной в журнале Science Advances в 2019 году. В ней физики предположили, что объективной реальности не существует вовсе а также пришли к выводу, что в микромире атомов и частиц факты могут быть субъективными, а наблюдатели могущественными. Интересно, что игнорировать эффект наблюдателя нельзя, так как это может привести к ошибкам в экспериментах на макроскопическом уровне, где квантовые эффекты попросту не будут заметны.

Интересный факт
Чтобы описать взаимодействие элементарных частиц физики используют волновую функцию состояние квантовомеханической системы, которая позволяет получить максимально полные данные о ней. Подробнее об этой сверхъестественной особенности мы рассказывали здесь, не пропустите.

Что такое реальность?

Сегодня целый ряд научных теорий предполагает, что существование тех или иных объектов и даже самой Вселенной зависит исключительно от наблюдателя. К такому выводу недавно пришли физики из Австралийского национального университета, изложив полученные результаты в научном журнале Nature Physics.

Но противоречия на этом не заканчиваются. Так, результаты еще одной научной работы, опубликованной в 2022 году показали, что реальность существует вне нашего сознания и изменить ее мы не можем. В то же самое время физики из Федерального университета ABC (UFABC) в Бразилии предположили, что реальность существует в глазах наблюдателя. К такому выводу ученые пришли разработав математическую структуру, которая позволяет понять природу принципа дополнительности в результате изучения физической реальности.

Что такое реальность? И зависит ли ответ на этот вопрос от наблюдателя?

Наш главный вывод заключается в том, что физическая реальность в квантовом мире состоит из взаимоисключающих факторов, которые дополняют друг друга, объясняют авторы научной работы.

В работе, опубликованной в журнале Communications Physics, исследователи также приводят слова знаменитого физика Ричарда Фейнмана: «Если вы думаете, что понимаете квантовую механику, то вы точно ее не понимаете».

Хотите всегда быть в курсе последних новостей из мира науки и технологий? Подписывайтесь на наш канал в Яндекс.Дзен там регулярно выходят статьи, которых нет на сайте!

Парадоксально, но странность, присущая этому разделу физики, может оказаться полезной наряду с развитием квантовых технологий, таких как компьютеры, датчики и тепловые устройства. И так как мы вступаем в новую, квантовую эпоху, многое о природе реальности еще предстоит узнать. В конечном итоге квантовая механика полна таинственных явлений.

Квантовая механика фундаментальная физическая теория, устанавливающая способ описания и законы движения микрочастиц (молекул, атомов, атомных ядер, частиц)

Словом, будущее нас ждет интересное. И так как свет может вести себя и как волна и как частица в зависимости от контекста, он по-прежнему остается одной из самых интригующих и красивых загадок квантовой механики. Увы, но на сегодняшний день единого ответа на вопрос о том, из чего состоит реальность и может ли она существовать без/с наблюдателем нет.

И если вы окончательно не запутались, рекомендуем обратить внимание на феномен, при котором квантовые состояния двух или более объектов оказываются взаимозависимыми. Заинтригованы? Тогда вам сюда!

Подробнее..

Кто открыл гравитацию Исаак Ньютон или Леонардо да Винчи?

17.02.2023 22:08:51 | Автор: admin
Кто открыл гравитацию Исаак Ньютон или Леонардо да Винчи? Ученые считают, что Леонардо да Винчи начал расшифровку законов гравитации раньше, чем Исаак Ньютон. Фото.

Ученые считают, что Леонардо да Винчи начал расшифровку законов гравитации раньше, чем Исаак Ньютон

Согласно популярной легенде, первым человеком, узнавшим о существовании силы гравитации, был Исаак Ньютон английский физик, математик, механик и астроном. Озарение пришло случайно, когда великий ученый сидел под деревом и на его голову упало яблоко. После этого происшествия, Ньютон сформулировал закон всемирного тяготения, которая гласит, что все тела во Вселенной притягиваются друг к другу. Этот закон объяснил, почему Луна всегда удерживается в пределах Земли, а также помог астрономам узнать массу Солнца, открыть планету Нептун и совершить много других научных прорывов. Нам со школьных лет говорят, что гравитацию открыл сэр Исаак Ньютон, однако недавно были найдены весомые доказательства того, что впервые о ее существовании узнал Леонардо да Винчи. Что же это, получается, что скоро учебники по физике будут переписаны?

Интересный факт: история о том, как на формулировку закона всемирного тяготения Исаака Ньютона вдохновило упавшее яблоко, скорее всего, не выдумка. Впервые она была рассказана в книге Воспоминания о жизни Ньютона под авторством биографа Уильяма Стьюкли. Со слов племянницы ученого, история произошла в 1666 году, когда он пережидал эпидемию чумы в поместье своей матери.

Неожиданные рукописи Леонардо да Винчи

Доказательства причастности Леонардо да Винчи к открытию гравитации нашлись в Кодексе Арундела. Так называется собрание из почти 300 заметок, сделанных ученым в период с 1480 по 1518 год. На старинных листах имеется много текстов и рисунков, которые касаются тем механики и геометрии. Кодекс получил свое название в честь графа Арундела, который приобрел его в 1630-е годы в Испании.

Неожиданные рукописи Леонардо да Винчи. Леонардо да Винчи оставил после себя огромное количество рукописей, который до сих пор изучаются специалистами. Фото.

Леонардо да Винчи оставил после себя огромное количество рукописей, который до сих пор изучаются специалистами

В 2017 году профессор Калифорнийского технологического института Мори Гариб (Mory Gharib) изучал рукописи ученого, в надежде найти иллюстрации, которые он мог бы показать своим ученикам. На одной из страниц он нашел весьма интригующий набросок с кувшином и высыпающимися из него частицами. Посоветовавшись с двумя инженерами, профессор пришел к выводу, что на рисунке изображен эксперимент, который дал начало расшифровке законов гравитации. Это произошло за десятилетия до того, как об этом задумался Исаак Ньютон.

Неожиданные рукописи Леонардо да Винчи. Иллюстрация эксперимента, проведенного Леонардо да Винчи. Фото.

Иллюстрация эксперимента, проведенного Леонардо да Винчи

Статья в тему: Ученые нашли ныне живущих потомков Леонардо да Винчи

Эксперимент Леонардо да Винчи, о котором никто не знал

В эксперименте Леонардо да Винчи, кувшин с водой или песком перемещается по прямой траектории, параллельно земле. В процессе этого перемещения, содержимое сосуда стекает вниз. Итальянский ученый отметил, что частицы воды или песка не падают с постоянной скоростью, а ускоряются. Он показал, что после высвобождения из кувшина, частицы перестают двигаться вместе с ним по горизонтали, а падают вниз.

Эксперимент Леонардо да Винчи, о котором никто не знал. Равнобедренный треугольник в набросках Леонардо да Винчи. Фото.

Равнобедренный треугольник в набросках Леонардо да Винчи

Наброски ученого также демонстрируют, что если кувшин движется по горизонтали с тем же ускорением, что и падающие частицы, создается равнобедренный треугольник. А если сосуд движется со строго определенным ускорением, образуется наклонная линия. Судя по записям, Леонардо да Винчи также хотел сформулировать уравнение для описания ускорения, но сделать этого он не смог. При всем этом, компьютерное моделирование показало, что если ученый действительно провел эти эксперименты, ему бы вполне удалось рассчитать значение свободного падения с точностью 97%.

Читайте также: Древнейшая карта ночного неба оказалась поразительно точной, но кто и как ее создал?

Что открыл Леонардо да Винчи?

Пожалуй, итальянец Леонардо да Винчи является самым известным ученым во всем мире о нем слышали все. Большинству из нас он знаком как художник, руки которого создали знаменитую Мона Лизу и роспись Тайная вечеря. Но также он был очень продуктивным изобретателем он создал устройства, опередившие свое время. Так, в далеком 1508 году он разработал прообраз контактных линз в виде наполненного шара с водой. Если интересно, вы можете почитать об этом изобретении по этой ссылке.

Что открыл Леонардо да Винчи? Наброски изобретений Леонардо ла Винчи. Фото.

Наброски изобретений Леонардо ла Винчи

Если выводы профессора Мори Гариба и его коллег верны, Леонардо да Винчи вполне может быть первым человеком, который догадался о существовании гравитации. По словам профессора, они не знают, продолжил ли итальянец свои эксперименты. Но сам факт наличия таких записей говорит о том, что ученого интересовало, почему и как объекты падают на землю. Мышление Леонардо да Винчи дошло очень далеко, но сформулировать закон всемирного тяготения ему все-таки не удалось это сделал Исаак Ньютон. Скорее всего, именно он останется общепринятым человеком, который открыл гравитацию. Но первые шаги в этом направлении сделал Леонардо да Винчи.

Что открыл Леонардо да Винчи? Кажется, Леонардо да Винчи опередил Исаака Ньютона, но не довел дело до конца. Фото.

Кажется, Леонардо да Винчи опередил Исаака Ньютона, но не довел дело до конца

Самые свежие новости науки и технологии вы найдете в нашем Telegram-канале. Подпишитесь прямо сейчас!

Напоследок стоит отметить, что великий ученый является автором самой дорогой картины в мире она называется Спаситель мира. В нее заложен любопытный секрет, о котором мы рассказывали в этом материале.

Подробнее..

Есть ли у нашей Вселенной зеркальный двойник?

04.09.2022 00:16:03 | Автор: admin

Теория зеркальной вселенной вновь набирает популярность среди космологов

Сегодня теория множественности миров является частью массовой культуры и постоянно присутствует в фильмах и сериалах. При этом Мультивселенная не выдумка фантастов в ее основе лежат научные теории, описывающие устройство нашего мира. Наиболее популярной является теория инфляции, согласно которой Вселенная начала расширяться после Большого взрыва, а ее свойства объясняет структура и распределение галактик. Профессор Стэндфордского университета Андрей Линде является сторонником теории Мультиверса. Он отмечает, что наше понимание реальности неполное, а существование параллельных вселенных невозможно подтвердить экспериментально (по крайней мере пока). Но что, если посмотреть на Вселенную иначе, допустив существование всего одной альтернативной реальности так называемой зеркальной Вселенной? Исследователи полагают, что с ее помощью можно разрешить кризис космологии. Но как? Давайте разбираться!

Теоретическая физика достигла таких высот, что (мы) можем рассчитать даже то, что невозможно себе представить, Л. Д. Ландау

Зеркальные нейтрино

О том что Вселенная расширяется с ускорением стало известно в конце 1990-х годов и привело к пересмотру физических законов, объясняющих устройство Вселенной. Появление гипотетической темной энергии, равномерно заполняющей пространство и отталкивающей массивные тела, призвано объяснить быстрое расширения Вселенной, однако ее существование не доказано. Картину дополняет таинственная темная материя, которая не взаимодействует с электромагнитным излучением и проявляет себя с помощью гравитационного воздействия на наблюдаемые объекты. Но при чем здесь зеркальная вселенная?

Ответ напрашивается сам собой теория зеркальной вселенной предполагает красивое и простое решение сложных проблем. В ее основе лежит существование гипотетических частиц, так называемых зеркальных нейтрино, поиски которых ведутся на протяжении многих лет но так и не увенчались успехом.

Некоторые исследователи считают, что зеркальные нейтроны могут являться кандидатами на составляющую темной материи.

Больше по теме: Возможно существует параллельная Вселенная, время в которой идет вспять

В 2008 году исследователи из Петербургского института ядерной физики (ПИЯФ РАН) рассмотрели гипотезы зарождения и строения Вселенной на уровне элементарных частиц. Большое значение имела продолжительность жизни нейтрона нестабильной элементарной частицы, лишенной электрического заряда.Звучит непонятно, так что попробуем внести ясность: ученые хотели понять, как долго нейтрон может существовать вне атомного ядра.

Проведенные измерения были точными и соответствовали Стандартной модели, описывающее электромагнитное, слабое и сильное взаимодействие всех элементарных частиц, позволяя ученым понять как образуется материя во Вселенной и почему срок жизни нейтрона важен для Стандартной модели.

По словам доктора физико-математических наук Анатолия Сереброва, «полученное в ходе исследования значение времени жизни нейтрона лучше описывает процесс первичного нуклеосинтеза при формировании Вселенной» (под нуклеосинтезом ученые понимают природный процесс образования ядер химических элементов тяжелее водорода).

ХХ век позволил нам заглянуть внутрь самого мироздания.

Серебров также озвучил смелое предположение о том, что обычные нейтроны могут переходить в другую вселенную, превращаясь в зеркальные нейтроны. Выглядит этот процесс так кажется, что частицы просто исчезли в ходе эксперимента.

В 2018 году физики из Национальной лаборатории Ок-Ридж (США) вернулись к предположению Сереброва и пришли к такому же выводу. Если зеркальные нейтроны действительно существуют, то отправляются в зеркальную вселенную, полностью отделенную от нашей и с собственными законами физики.

Интересный факт
Зеркальные нейтроны часто называют стерильными из-за их неспособности участвовать в большинстве взаимодействий.

Современная физическая теория допускает существование зеркальной вселенной, а ее обитателями могут быть зеркальные атомы и даже зеркальные планеты и звезды (но не зеркальные версии нас с вами, увы). В совокупности эти гипотетические частицы могут образовать целый теневой мир, такой же реальный как наш, но практически полностью от нас отрезанный.

Если в будущем мы сможем обнаружить хотя бы одно зеркальные нейтрино, это докажет, что видимая Вселенная лишь половина того, что существует, а известные законы физики половина гораздо более широкого набора правил, рассказали исследователи в интервью NBC News.

Зеркальная вселенная

Сегодня теория зеркальной вселенной привлекает внимание ученых из-за своей способности объяснить причины ее ускоряющегося расширения. Это простое и элегантное решение также объясняет наблюдаемое несоответствие между материей и антиматерией (об этом чуть позже) и может положить конец кризису космологии.

Так как космология охватывает всю вселенную от рождения до смерти, такие понятия как темная материя, темная энергия и Мультивселенная всерьез рассматривается уважаемыми учеными.

Постоянная Хаббла число, которое космологи используют для измерения расширения Вселенной. Свое название постоянная получила в честь астронома Эдвина Хаббла, который впервые измерил ее в 1929 году.

Чтобы понять верна ли зеркальная теория, физики из Университета Нью-Мексико и Калифорнийского университета создали несколько математических моделей, которые соответствовали наблюдаемым темпам расширения Вселенной. Полученные в ходе работы результаты показали, что только одна модель не нарушает законы физики и объясняет несоответствия постоянной Хаббла. И это модель зеркальной вселенной.

Отметим, что с математической точки зрения эта концепция является решением давно наблюдаемой проблемы. Как объясняют авторы работы, опубликованной в журнале Physics Review Letters, дальнейшее построение модели может раскрыть многие тайны Вселенной.

А вы знаете сколько видов Мультивселенной существует и в какой из них находимся мы? Ответ здесь, не пропустите!

Вселенная из антиматерии

Теперь обратимся к еще одному варианту решения космологических и физических проблем концепции антиматерии. Считается, что она объясняет причину существования материи, которой в нашей Вселенной быть не должно. Основная идея заключается в том, что у каждой частицы есть пара, следовательно, у материи в нашей вселенной есть двойник из антиматерии (если говорить совсем простыми словами).

У нашей Вселенной может быть зеркальный близнец, Антивселенная.

Несмотря на то, что эта идея давно потеряла популярность (по разным причинам), физики рассматривают антивселенную в качестве возможного решения целого ряда проблем, включая постоянную Хаббла. Объединяет все эти теории предположение о том, что наблюдаемые пространство и время не единственная реальность.

Хотите всегда быть в курсе новостей из мира популярной науки и технологий? Подписывайтесь на наш канал в Telegram, так вы точно не пропустите ничего интересного!

Очень много вселенных

Так как доказать существование зеркальной вселенной или мультивселенной ученые не в силах, данная область исследований относится к теоретической физике. Так, в 1957 году физик Хью Эверетт предложил одну из наиболее популярных на сегодняшний день теорий многомировую интерпретацию квантовой механики, которая предсказывает наличие ветвящихся временных линий или альтернативных реальностей.

Интерпретация Эверетта также математически описывает поведение материи, о чем я рассказывала ранее и является одной из наиболее признанных теорий альтернативных вселенных. Подход Эверетта основан на инфляционной модели Вселенной, с помощью которой можно объяснить многие наблюдаемые свойства.

Сегодня мы видим лишь малую часть Вселенной

Поначалу теория воспринималась как научная фантастика, однако со временем смогла объяснить множество особенностей нашего мира и люди стали относиться к ней серьезно, рассказывает Линде. Кстати, если вы хотите больше узнать о Мультивселенной и ее научной составляющей, вам сюда (мы старались:)

Итак, какие выводы можно сделать о зеркальной вселенной и бесконечном множестве миров? Увы, но на сегодняшний день все существующие теории недоказуемы. Это означает, что нам нужны новые, лучшие теории для объяснения свойств наблюдаемой Вселенной. Но даже если правда навсегда останется тайной, у нас как минимум есть воображение, наука и бесчисленное множество вероятностей, размышления о которых развивает мышление. Согласны?

Подробнее..

Физика частиц и новейшие технологии что нас ждет в ближайшие 10 лет?

19.02.2022 00:06:58 | Автор: admin

Квантовые технологии стремительно развиваются

Квантовая теория родилась в первой половине XX века. Среди ее создателей были Нильс Бор, Альберт Эйнштейн, Макс Планк, Вернер Гейзенберг, Эрвин Шредингер и другие, не менее выдающиеся ученые. Создание Стандартной модели элементарных частиц ознаменовало собой революцию в понимании Вселенной. Именно квантовая теория подарила миру лазеры, МРТ, ускорители частиц, компьютеры, интернет и ядерное оружие. Но что дальше? Некоторые физики полагают, что в ближайшие пять лет будут созданы устройства, которые до недавнего времени описывались лишь на страницах научно-фантастических романов. Дело в том, что любой скачок в области квантовых вычислений увеличивает потенциал технологии, способной выполнять вычисления и моделирование, выходящие за рамки современных суперкомпьютеров. Иными словами, мир готовится к квантовому будущему. И если квантовые технологии действительно изменят вычисления в том виде, в каком мы их знаем, то какое будущее нас ждет?

Основные принципы квантовой теории

Итак, в отличие от классической физики, которая опирается на гравитацию и законы движения Ньютона, квантовые частицы действуют по своим собственным правилам. Например, такое понятие как суперпозиция указывает на способность квантовой системы находиться в нескольких состояниях одновременно.

И хотя звучит немного безумно и напоминает мысленный эксперимент кота Шредингера, частица действительно может находиться в нескольких состояниях сразу, но лишь до того момента, пока ее не измерят.

Эйнштейн называл квантовую запутанность сверхъестественной связью

Следующий принцип называется квантовой запутанностью. Наблюдать ее можно когда два атома связаны между собой, несмотря на то, что их разделяет огромное расстояние. Если свойства одного из атомов изменяются, его запутанный аналог тоже меняется, причем мгновенно. Запутанность присутствует даже тогда, когда атомы расположены на противоположных концах Вселенной.

Больше по теме: Тайны квантовой механики что такое квантовая запутанность?

Суперпозиция и запутанность являются основополагающими принципами квантовой теории. Эти квантовые системы нашли свое повседневное применение, и ученые, наконец, учатся управлять ими и использовать в собственных интересах.

Квантовые вычисления и технологии

Квантовая теория необходима для понимания ядерной структуры, составляющей ядро частицы протона и нейтрона которые сильно притягиваются друг к другу ядерными силами, а их столкновение высвобождает ядерную энергию.

Квантовые эффекты также лежат в основе полупроводников и транзисторов, которые привели к настоящей электронной революции и массовому производству классических компьютеров. И если говорить о современных технологиях, основанных на квантовой теории, то они могут быть усовершенствованы.

Запутанность квантовых состояний это реальность.

Так, мы знаем, что информация в обычных компьютерах принимает форму двоичных цифр (битов), которые могут иметь только два состояния: 0 или 1. Суперпозиция квантовых битов (кубитов) позволяет компьютеру хранить и 0 и 1 по отдельности, а также комбинацию обоих значений одновременно используя суперпозиции этих двух состояний.

Вам будет интересно: Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?

На самом деле квантовые вычисления являются самой горячей темой среди физиков и инвесторов, так как обладают невероятным потенциалом с точки зрения скорости и эффективности по сравнению с классическими компьютерами. И все же впереди еще много работы, прежде чем квантовые компьютеры появятся на рынке.

Для создания функционального квантового компьютера требуется удерживать объект в состоянии суперпозиции достаточно долго, чтобы выполнять на нем различные процессы.

По мнению некоторых исследователей, квантовые компьютеры предоставят нам возможность изучать саму квантовую физику неизвестным до сих пор способом. Его можно будет использовать, например, для моделирования поведения молекул лекарств и разработке новых материалов для более эффективных батарей или источников энергии.

Квантовая телепортация, датчики и связь

Звучит как фантастика, но связь между запутанными парами частиц необходима для успешной квантовой телепортации. Исследователи провели множество экспериментов и к 2017 году им удалось телепортировать фотон с Земли на орбиту. Квантовая телепортация также лежит в основе планов по созданию квантового интернета.

Больше по теме: Возможна ли телепортация человека?

В свою очередь, квантовые датчики могут измерять стимулы, например, магнитные поля или высокочастотные сигналы. Их можно использовать в том числе для выявления рассеянного склероза на ранней стадии; мониторинга и заблаговременного предупреждения о вулканической активности; а также для помощи самоуправляемым транспортным средствам «видеть» что находится за поворотом.

Квантовые технологии сложная область физики, которая исследует поведение субатомных частиц

Что же до квантовой коммуникации, то защита данных с использованием законов квантовой физики может использоваться для обмена секретной информацией, используемой для шифрования и аутентификации. Кванты также могут быть использованы для вычислений и решения определенных задач, с решением которых обычные компьютеры не справятся.

Квантовое будущее

Страны по всему миру, включая Китай, Канаду и США, объявили о многомиллионных и миллиардных исследовательских программах по продвижению квантовых технологий и работы в области квантовой информатики. Очевидно, что квантовые информационные технологии окажут мощное влияние на весь мир, но мы только-только начинаем понимать, как будет выглядеть квантовое будущее.

Не пропустите: Может ли квантовая механика объяснить существование пространства-времени?

Если квантовые компьютеры станут достаточно большими и будут содержать тысячи или миллионы кубитов, они позволят понять сложные химические реакции и разработать новые лекарства. Это, в свою очередь, приведет к разработке новых материалов и вычислений.

Разработка квантовых компьютеров позволит добиться научного прорыва в области биологии, химии, медицины и транспорта.

В конечном итоге все эти данные позволят ученым оптимизировать алгоритмы искусственного интеллекта и машинного обучения, кибербезопасности и финансов, а также расшифровке кода, на котором основана безопасность современных систем связи.

Более того, некоторые исследователи полагают, что в течение ближайшего десятилетия мы наконец увидим появление искусственного интеллекта. Интересно и то, что появление квантовых технологий приблизит нас к новому пониманию природы, Вселенной и нас самих. А как вы думаете, куда в первую очередь приведут нас инновации в квантовой теории? Ответ будем ждать здесь, а также в комментариях к этой статье.

Подробнее..

Категории

Последние комментарии

© 2006-2024, umnikizdes.ru