Русский
Русский
English
Статистика
Реклама

Элементарные частицы

Что такое бозон Хиггса и почему ученые хотели его открыть

27.08.2020 00:12:52 | Автор: admin

В основе основ всегда есть что-то. Вопрос в том, как это найти.

Многие что-то где-то слышали про бозон Хиггса, а некоторые даже пробовали разобраться в вопросе того, что это такое. В итоге, объяснение данного процесса такое сложное, что понять все это не так легко. Мы просто знаем, что это важно, и все. Хотя иногда даже складывается ощущение, что ученые от нас что-то скрывают, и на самом деле аппаратура на миллиарды долларов, включая Большой адронный коллайдер, просто не нужна. Конечно, это не так, и физики сделали большое открытие (и продолжают делать новые), вот только надо понимать, даст ли это что-то нам с вами. Я имею в виду простых людей, которым интересно прочитать и удивиться, сколько денег потратили на новую лабораторию, но куда интереснее получить от этого какие-то преимущества. Давайте попробуем понять, светит ли нам мир во всем мире и будет в наших домах теплей от обнаружения бозона Хиггса. Да и вообще, что это такое.

Что такое бозон Хиггса

Прежде, чем рассказывать, чем является одно из самых важных открытий современной физики, надо дать этому определение. Желательно сделать это простым языком, а не так, чтобы его поняли только дипломированные физики. Этим и займемся.

Сделать это совсем просто — не просто. Еще в начале девяностых годов прошлого века в разных научных сообществах даже учреждались премии, которые должны были стимулировать ученых придумывать простые объяснения главной частицы всех теорий. Получалось так себе, но версии были очень разные.

Физики отчаянно хотят, чтобы бозон Хиггса был ошибкой

Например, одна из версий абстрактно сравнивала ситуацию с вечеринкой. Приводилась в пример группа людей, которая присутствует на каком-либо мероприятии, куда в какой-то момент заходит известный человек. Для наглядности можно даже сказать знаменитый. В итоге, некоторые люди в помещении начинают перемещаться в его сторону и идут за ним, так как хотят с ним пообщаться.

Во время такого следования толпа может разбиваться на небольшие группы, которые, допустим, будут обсуждать какие-то новости или сплетни. Постепенно они начнут передавать сплетню друг другу и начнут образовывать уплотнения.

Физики наконец-то увидели, на что распадается бозон Хиггса

В этом объяснении помещение является полем Хиггса, знаменитость является частицей, движущейся в поле, а группы людей будут представлять из себя возмущения этого поля. Ничего не понятно? Согласен! Но ведь это одно из самых простых объяснений. Если вы можете более просто объяснить, что такое бозон Хиггса, расскажите об этом в нашем Telegram-чате. Может у вас получится.

Где-то тут должна ходить знаменитость и тогда мы поймем, что такое бозон Хиггса. Или нет…

Существует ли бозон Хиггса

Бозон Хиггса является фундаментальной частицей Стандартной модели. До недавнего времени найти ее было невозможно. При этом существование такой частицы физики предсказывали еще в шестидесятые годы прошлого века. У них не было оборудования, которое позволяло бы доказать существование таких частиц, и им нужен был инструмент, который создали только существенно позже. Произошло это в 2008 году, когда в ЦЕРНе (Европейский совет ядерных исследований) появился Большой адронный коллайдер.

Стандартная модель является теоретической конструкцией, применяемой в физике элементарных частиц. Она описывает электромагнитное взаимодействие всех элементарных частиц (слабое и сильное). Стандартная модель не описывает некоторые стороны физики, например, темную материю. Именно поэтому ее нельзя называть теорией всего. Картинка стандартной модели полностью сложилась, когда открыли бозон Хиггса.

Почему бозон Хиггса называют частицей Бога

С 2008 год ученые подкованы поисках Частицы Бога (одно из названий бозона Хиггса). Так ее называют по предложению Леона Ледермана, который был нобелевским лауреатом и выпустил книгу с заголовком, начинающимся с этих слов. Хотя самому ученому больше по душе было название Проклятая частица, но оно как-то не прижилось.

Благодаря этому американскому ученому бозон Хиггса стали называть именно так.

Как говорится, хоть чертом лысым назови, но частицу в итоге нашли и произошло это в 2012 году. Помог в обнаружении как раз тот самый Большой адронный коллайдер. При этом после обнаружения ученые сообщили об этом, но не торопились делать поспешных выводов и выступали очень осторожно. В первые дни после эксперимента ученые говорили, что они только нашли элементарную частицу, похожую на бозон Хиггса.

Что даст обнаружение частицы Бога

Немного абсурдный пример. Какое-нибудь насекомое живет под землей и никогда не вылезает на поверхность, но догадывается, что небо синее (вот такое умное насекомое). Потом оно видит синий цвет и понимает, какое на самом деле небо, и что оно было право. Вот только изменит ли это что-то с точки зрения самого неба? Конечно, нет. Оно как было синим, так и осталось, а насекомое, как жило под землей, так и продолжило там жить.

Почему наша Вселенная такая странная и существуют ли законы физики?

Примерно так же дела обстоят и с бозоном Хиггса. Он не позволит начать нам путешествовать во времени, не поспособствует созданию вечного двигателя и не станет основной лекарства от всех болезней. По сути его обнаружение просто подтвердило предполагаемые принципы взаимодействия частиц и свело воедино все утверждения Стандартной теории. Возможно, из-за его появления вопросов в других областях физики, наоборот, станет только больше.

Визуализаций поиска бозона Хиггса очень много.

Где можно применить бозон Хиггса

На практике применение бозона Хиггса пока невозможно, да и не понятно, где его применять. Зато он важен для фундаментальной физики. Ну, хотя бы он не привел к концу света, о котором говорили многие скептики. Были даже теории о том, что столкновение частиц в Большом адронном коллайдера может породить черную дыру, которая поглотит всю нашу Солнечную систему. А Дэн Браун в своей известной книге Ангелы и демоны сделал основной сюжета охоту за антивеществом, которое злоумышленники похитили в ЦЕРН.

Бозон Хиггса: портал в темный мир?

В итоге у нас (у человечества) есть бозон Хиггса и Большой адронный коллайдер в центре Европы, стоимость строительства которого превысила 10 миллиардов долларов. Практической пользы для простых людей чуть меньше, чем нет совсем, но звучит вся эта история интересно. Ну, хоть физики довольны — может найдут применение своей находке.

Подробнее..

Ученые из ЦЕРН стоят на пороге открытия новой физики

28.03.2021 18:14:18 | Автор: admin

Чего только не обнаружишь в Большом адронном коллайдере.

В 2008 году в Европе состоялся запуск гигантского ускорителя заряженных частиц Большого адронного коллайдера (БАК). Тогда казалось, что мир словно сошел с ума. Но не от радости за достижения современной науки, а от ужаса перед неизведанным слухи о том, что запуск БАК приведет к созданию черной дыры и неизбежному концу света распространялись с молниеносной скоростью. И сколько бы физики не объясняли, что коллайдер разгоняет элементарные частицы до околосветовых скоростей и сталкивает их друг с другом и этот процесс не может привести к апокалипсису, истинно верующие до сих пор глаголят, что коллайдер есть начало конца. Это может показаться удивительным, но в чем-то они, вероятно, оказались правы. Новая работа ученых из Европейской организации ядерных исследований (ЦЕРН) предрекает конец нашим представлениям о физике: полученные результаты указывают на новую силу природы за пределами Стандартной модели, которую ученые не понимают.

Для чего нужен БАК?

Недавно мировые СМИ сообщили о новом удивительном открытии ученых из ЦЕРН, которые зафиксировали необычные данные, способные указать на существование совершенно новой силы природы. Секрет кроется в неуловимой и нестабильной частице под названием B-мезон.

В-мезоны неуловимые и нестабильные парные кварки, которые движутся вместе и быстро распадаются.

Но прежде чем погрузиться в подробности увлекательного эксперимента, напомним, что ученые из ЦЕРН ведут работу по разным направлениям, включая поиск антиматерии вещества с потенциально неисчерпаемым источником энергии. В 2012 году состоялось открытие «Бозона Хиггса» частицы, которая фактически связывает электроны, протоны и нейтроны. В перспективе ее открытие может привести к созданию новых систем связи и квантовых компьютеров. Работа над ними, кстати, активно ведется, о чем рассказывал мой коллега Рамис Ганиев в этой статье.

В длину гигантский ускоритель частиц достигает 100 километров, а его диаметр превышает 25 км.

Говоря об экспериментах БАК можно сказать, что физики «гоняют» элементарные частицы и сталкивают их друг с другом в попытке обнаружить новые и ранее неизученные свойства протонов, нейтронов и электронов. А в ближайшие полтора года, как отмечает The Guardian, исследователям предстоит окончательно доказать или опровергнуть существование «новой физики».

Хотите всегда быть последних новостей из мира популярной науки и высоких технологий? Подписывайтесь на наш канал в Google News чтобы не пропустить ничего интересного!

Крупный проект БАК

Как говорится в пресс-релизе исследования на сайте ЦЕРН, во время пробегов частиц на БАКе физики тщательно изучали редчайшие распады парных кварков (B-мезонов). Оказалось, что В-мезоны распадаются на разные количества электронов и мюонов, что противоречит предсказаниям Стандартной модели. Напомним, что мюон (в Стандартной модели физики) является неустойчивой элементарной частицей с отрицательным электрическим зарядом.

Читайте также: Большой Адронный Коллайдер будет обогревать дома

Необходимо также отметить, что обнаруженные аномалии во время распада B-мезонов сегодня являются одним из основных направлений исследований крупного проекта БАК экспериментальной группы LHCb.

Стандартная модель физики элементарных частиц предсказывает, что распады с участием различных лептонов, таких как в исследовании LHCb, должны происходить с одинаковой вероятностью. Лептонами физики называют электрон, мюон и таон, которые должны взаимодействовать с окружающим миром одинаково, с поправкой на различия в массе. Однако сравнив, как часто происходят подобные распады, участники LHCb обнаружили, что пары мюонов возникали значительно чаще, чем электроны и позитроны. Но чем можно объяснить такое несоответствие?

Пятая сила природы

Пока что ученые не уверены, но им понадобится новая сила природы, чтобы объяснить подобные аномалии. Однако отсутствие четкого объяснения порождает волнение. В ЦЕРН говорят, что экспериментальная группа LHCb продолжит изучение этой непредсказуемой разницы. Так, уже в следующем году физики обновят детектор команды и начнут запускать новые версии эксперимента.

С большим количеством результатов, которые покажут наличие той же аномалии, команда сможет подтвердить или опровергнуть существование нового вида физики. Как отметил в интервью ТАСС.Наука один из участников эксперимента LHCb, главный научный сотрудник НИТУ «МИСиС» Андрей Голутвин, говорить об открытии пока рано, так как ученые получили лишь первые указания на него.

Результаты исследования ученых из ЦЕРН указывают на новую силу природы, которую ученые не понимают.

«Нужно ждать подтверждения на других установках, в первую очередь, на японской фабрике B-мезонов Belle, а также в последующих опытах на LHCb и других экспериментах БАК. При этом, на мой взгляд, уже сейчас можно сказать, что это еще более важный и интересный результат, чем открытие бозона Хиггса», пояснил Голутвин.

Изучение частиц и сил, управляющих их поведением, может привести к большим изменениям в стратегии физики элементарных частиц, в том числе и в том, как будут проводиться новые эксперименты и строиться последующие ускорители высоких энергий.

Подробнее..

Крах Стандартной модели колебание крошечной частицы нарушает известные законы физики

09.04.2021 16:08:16 | Автор: admin

Мюонное кольцо g-2 в Национальной ускорительной лаборатории имени Энрико Ферми (Fermilab, США), работает при температуре минус 450 градусов по Фаренгейту и изучает колебания мюонов при прохождении через магнитное поле.

Вот и наступил долгожданный момент на этой неделе ученые объявили о существовании неизвестных для науки элементарных частиц и взаимодействий между ними, которые жизненно необходимы для природы и эволюции космоса. Наши постоянные читатели наверняка знают, что в последнее время число свидетельств того, что крошечная субатомная частица, похоже, не подчиняется известным законам физики, растет. Новое открытие, о котором поговорим в этой статье, открывает дверь в неизвестность в нашем понимании Вселенной. Как пишет в своем Twitter американский физик-теоретик Митио Каку, полученные результаты свидетельствуют о том, что мюон (его обнаружили в космических лучах) и электрон которые должны быть идентичны по-видимому, обладают разными свойствами. Это может являться свидетельством существования некой «высшей теории физики, включающей новые частицы, и одновременно быть подтверждением теории струн». И все же, не все ученые так оптимистичны.

Прощай, Стандартная модель?

О том, что одно новое открытие, вероятно, является важнейшим для современной физики, пишут все мировые СМИ. Еще бы эксперименты с частицами, известными как мюоны, показывают, что существуют неизвестные науке формы материи и энергии. Несмотря на поразительный успех в объяснении фундаментальных частиц и сил, составляющих Вселенную, описание Стандартной модели остается прискорбно неполным.

Во-первых, она не учитывает гравитацию и точно так же молчит о природе темной материи, темной энергии и масс нейтрино. Чтобы объяснить эти явления и многое другое, ученые искали Новую физику (физику за пределами Стандартной модели), исследуя аномалии, в которых экспериментальные результаты расходятся с теоретическими предсказаниями.

Что такое Мюон

Мюон это неустойчивая элементарная частица с отрицательным зарядом, похожая на электрон, но гораздо тяжелее. Является неотъемлемым элементом космоса. Исследователи отмечают, что эти фундаментальные частицы представляют собой крошечные вращающиеся вокруг собственной оси магниты.

Исследователи Национальной ускорительной лаборатории имени Энрико Ферми (Fermilab, США) в ходе эксперимента Muon g-2 хотели получить точные измерения колебания магнитных мюонов при прохождении через магнитное поле. Если экспериментальное значение магнитного момента этих частиц отличается от теоретического предсказания аномалия это отклонение может быть признаком новой физики, в которой на мюон влияет тонкая и неизвестная частица или сила.

«Это наш момент посадки марсохода», сказал Крис Полли, физик из Национальной ускорительной лаборатории Ферми, где проводятся исследования в интервью The New York Times.

Недавно обновленное экспериментальное значение для мюонов, опубликованное в Physical Review Letters, отклоняется от теории лишь на ничтожную величину (0,00000000251) и имеет статистическую значимость 4,2 сигма. Для полной уверенности ученым нужно достичь показателя в 5 сигма. Но даже это крошечное количество может сильно изменить направление физики элементарных частиц.

Как пишет Scientific American, при такой статистической значимости сигмы исследователи пока не могут сказать, что совершили открытие. Но доказательства существования новой физики в мюонах в сочетании с аномалиями, недавно наблюдавшимися в эксперименте Большого адронного коллайдера Beauty (LHCb) в ЦЕРНЕ близ Женевы впечатляют и раззадоривают ученых. Подробнее об этом открытии читайте в нашем материале.

Как физики обнаружили аномалию

Представьте себе каждый мюон в виде крошечных аналоговых часов. По мере того как частица вращается вокруг магнита, ее часовая стрелка вращается со скоростью, предсказанной Стандартной моделью. Когда время мюона истекает, он распадается на позитрон, который испускается в направлении часовой стрелки. Но если эта стрелка поворачивается со скоростью, отличной от теоретической скажем, слишком быстро распад позитрона в конечном итоге будет направлен в несколько ином направлении. (В этой аналогии часовая стрелка соответствует спину мюона квантовому свойству, определяющему направление распада мюона.) Обнаружьте достаточно отклоняющихся позитронов, и вы получите аномалию.

Когда мюон путешествует в пространстве, это пространство на самом деле представляет собой шипящий и роящийся суп из бесконечного числа виртуальных частиц, которые могут появляться и исчезать.

Кольцо хранения частиц мюона g-2 в здании MC-1 в Fermilab.

Однако то, что эта аномалия подразумевает, неоднозначно. Возможно, что-то не учитывается Стандартной моделью, и это может быть разница между электронами и мюонами. Или же подобный эффект может наблюдаться в электронах, которые в настоящее время слишком малы, чтобы их можно было увидеть. Напомним, что масса частицы связана с тем, насколько она может взаимодействовать с более тяжелыми неизвестными частицами, поэтому мюоны, масса которых примерно в 200 раз больше массы электронов, гораздо более чувствительны.

Ученые также сообщили, что вероятность того, что полученные измерения могут быть случайностью равняются одному из 40 000. Это значительно меньше золотого стандарта, необходимого для официального открытия по стандартам физики, а результаты, полученные исследователями, составляют лишь 6 процентов от общего объема данных, которые мюонный эксперимент, как ожидается, соберет в ближайшие годы.

Читайте также: Ученые приблизились к пониманию того, почему существует Вселенная

Новая физика

Сенсационное открытие исследователей из Fermilab является важным звеном в нашем понимании того, что может лежать за пределами Стандартной модели, но у теоретиков, которые ищут новую физику, нет бесконечного пространства для исследования. Любая теория, которая пытается объяснить результаты мюонного эксперимента, должна также учитывать отсутствие новых частиц, в ходе исследований на БАК в ЦЕРН.

Осмотр мюонного кольца g-2 в 2013 году.

Интересно, что в некоторых из предложенных на сегодняшний день теорий Вселенная содержит несколько типов бозонов Хиггса, а не только тот, который включен в Стандартную модель. Другие теории ссылаются на экзотические «лептокварки», которые вызывают новые виды взаимодействий между мюонами и другими частицами. Но поскольку многие из простейших версий этих теорий уже были исключены, физикам «приходится мыслить нетрадиционными способами», пишет National Geographic.

Однако как и Fermilab, эксперимент LHCb нуждается в большем количестве данных, прежде чем заявить о новом открытии. Но даже сейчас сочетание этих двух результатов не дает физикам спать спокойно.

Следующий шаг в этом направлении исследований повторить полученные результаты. Выводы Fermilab основаны на первом запуске эксперимента, который закончился в середине 2018 года. В настоящее время команда анализирует данные двух дополнительных запусков. Если эти данные будут похожи на данные полученные в ходе первого запуска, их может быть достаточно, чтобы сделать аномалию полномасштабным открытием к концу 2023 года.

Хотите всегда быть в курсе последних новостей из мира популярной науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram, чтобы не пропустить ничего интересного!

Физики также приступили к внимательному изучению предсказаний Стандартной модели, особенно в тех ее местах, которые, как известно, трудно вычислить. Новые суперкомпьютеры также должны помочь в этом нелегком деле, но все же потребуются годы, чтобы просеять эти тонкие различия и увидеть, как они влияют на охоту за новой физикой.

Физик-теоретик Митио Каку поделился своими мыслями о последних открытиях в своем Twitter.

Также нельзя не отметить реакцию на последние открытия известных физиков-теоретиков в Twitter. Митио Каку, например, считает, что полученные результаты также могут являться подтверждением теории струн. О том, как теория струн стала одной из величайших надежд теоретической физики, а потом пришла в долгосрочный упадок, мы рассказывали в этой статье. Рекомендую к прочтению.

Подробнее..

Колебание крошечной частицы нарушает известные законы физики

11.04.2021 18:19:36 | Автор: admin

Мюонное кольцо g-2 в Национальной ускорительной лаборатории имени Энрико Ферми (Fermilab, США), работает при температуре минус 450 градусов по Фаренгейту и изучает колебания мюонов при прохождении через магнитное поле.

Вот и наступил долгожданный момент на этой неделе ученые объявили о существовании неизвестных для науки элементарных частиц и взаимодействий между ними, которые жизненно необходимы для природы и эволюции космоса. Наши постоянные читатели наверняка знают, что в последнее время число свидетельств того, что крошечная субатомная частица, похоже, не подчиняется известным законам физики, растет. Новое открытие, по мнению ученых, открывает дверь в неизвестность в нашем понимании Вселенной. Как пишет в своем Twitter американский физик-теоретик Митио Каку, полученные результаты свидетельствуют о том, что мюон (его обнаружили в космических лучах) и электрон которые должны быть идентичны по-видимому, обладают разными свойствами. Это может являться свидетельством существования некой «высшей теории физики, включающей новые частицы, и одновременно быть подтверждением теории струн». Но не все ученые с ним согласны, так как чтобы подтвердить полученные в Fermilab результаты, потребуются годы исследований.

Прощай, Стандартная модель?

О том, что новое открытие, вероятно, является важнейшим для современной физики, пишут все мировые СМИ. Еще бы эксперименты с частицами, известными как мюоны, показывают, что существуют неизвестные науке формы материи и энергии. Несмотря на поразительный успех в объяснении фундаментальных частиц и сил, составляющих Вселенную, описание Стандартной модели остается прискорбно неполным.

Во-первых, она не учитывает гравитацию и точно так же молчит о природе темной материи, темной энергии и масс нейтрино. Чтобы объяснить эти явления и многое другое, ученые искали Новую физику (физику за пределами Стандартной модели), исследуя аномалии, в которых экспериментальные результаты расходятся с теоретическими предсказаниями.

Что такое Мюон

Мюон это неустойчивая элементарная частица с отрицательным зарядом, похожая на электрон, но гораздо тяжелее. Является неотъемлемым элементом космоса. Исследователи отмечают, что эти фундаментальные частицы представляют собой крошечные вращающиеся вокруг собственной оси магниты.

Исследователи Национальной ускорительной лаборатории имени Энрико Ферми (Fermilab, США) в ходе эксперимента Muon g-2 хотели получить точные измерения колебания магнитных мюонов при прохождении через магнитное поле. Если экспериментальное значение магнитного момента этих частиц отличается от теоретического предсказания аномалия это отклонение может быть признаком новой физики, в которой на мюон влияет тонкая и неизвестная частица или сила.

«Это наш момент посадки марсохода», сказал Крис Полли, физик из Национальной ускорительной лаборатории Ферми, где проводятся исследования в интервью The New York Times.

Недавно обновленное экспериментальное значение для мюонов, опубликованное в Physical Review Letters, отклоняется от теории лишь на ничтожную величину (0,00000000251) и имеет статистическую значимость 4,2 сигма (для полной уверенности ученым нужно достичь показателя в 5 сигма). Но даже это крошечное количество может сильно изменить направление физики элементарных частиц.

Как пишет Scientific American, при такой статистической значимости сигмы исследователи пока не могут сказать, что совершили открытие. Но доказательства существования новой физики в мюонах в сочетании с аномалиями, недавно наблюдавшимися в эксперименте Большого адронного коллайдера Beauty (LHCb) в ЦЕРН близ Женевы впечатляют и раззадоривают ученых. Подробнее об этом открытии читайте в нашем материале.

Как физики обнаружили аномалию

Представьте себе каждый мюон в виде крошечных аналоговых часов. По мере того как частица вращается вокруг магнита, ее часовая стрелка вращается со скоростью, предсказанной Стандартной моделью. Когда время мюона истекает, он распадается на позитрон, который испускается в направлении часовой стрелки. Но если эта стрелка поворачивается со скоростью, отличной от теоретической скажем, слишком быстро распад позитрона в конечном итоге будет направлен в несколько ином направлении. (В этой аналогии часовая стрелка соответствует спину мюона квантовому свойству, определяющему направление распада мюона.) Обнаружьте достаточно отклоняющихся позитронов, и вы получите аномалию.

Когда мюон путешествует в пространстве, это пространство на самом деле представляет собой шипящий и роящийся суп из бесконечного числа виртуальных частиц, которые могут появляться и исчезать.

Кольцо хранения частиц мюона g-2 в здании MC-1 в Fermilab.

Однако то, что эта аномалия подразумевает, неоднозначно. Возможно, что-то не учитывается Стандартной моделью, и это может быть разница между электронами и мюонами. Или же подобный эффект может наблюдаться в электронах, которые в настоящее время слишком малы, чтобы их можно было увидеть. Напомним, что масса частицы связана с тем, насколько она может взаимодействовать с более тяжелыми неизвестными частицами, поэтому мюоны, масса которых примерно в 200 раз больше массы электронов, гораздо более чувствительны.

Ученые также сообщили, что вероятность того, что полученные измерения могут быть случайностью равняются одному из 40 000. Это значительно меньше золотого стандарта, необходимого для официального открытия по стандартам физики, а результаты, полученные исследователями, составляют лишь 6 процентов от общего объема данных, которые мюонный эксперимент, как ожидается, соберет в ближайшие годы.

Читайте также: Ученые приблизились к пониманию того, почему существует Вселенная

Новая физика

Сенсационное открытие исследователей из Fermilab является важным звеном в нашем понимании того, что может лежать за пределами Стандартной модели, но у теоретиков, которые ищут новую физику, нет бесконечного пространства для исследования. Любая теория, которая пытается объяснить результаты мюонного эксперимента, должна также учитывать отсутствие новых частиц, в ходе исследований на БАК в ЦЕРН.

Осмотр мюонного кольца g-2 в 2013 году.

Интересно, что в некоторых из предложенных на сегодняшний день теорий Вселенная содержит несколько типов бозонов Хиггса, а не только тот, который включен в Стандартную модель. Другие теории ссылаются на экзотические «лептокварки», которые вызывают новые виды взаимодействий между мюонами и другими частицами. Но поскольку многие из простейших версий этих теорий уже были исключены, физикам «приходится мыслить нетрадиционными способами», пишет National Geographic.

Однако как и Fermilab, эксперимент LHCb нуждается в большем количестве данных, прежде чем заявить о новом открытии. Но даже сейчас сочетание этих двух результатов не дает физикам спать спокойно.

Следующий шаг в этом направлении исследований повторить полученные результаты. Выводы Fermilab основаны на первом запуске эксперимента, который закончился в середине 2018 года. В настоящее время команда анализирует данные двух дополнительных запусков. Если эти данные будут похожи на данные полученные в ходе первого запуска, их может быть достаточно, чтобы сделать аномалию полномасштабным открытием к концу 2023 года.

Хотите всегда быть в курсе последних новостей из мира популярной науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram, чтобы не пропустить ничего интересного!

Физики также приступили к внимательному изучению предсказаний Стандартной модели, особенно в тех ее местах, которые, как известно, трудно вычислить. Новые суперкомпьютеры также должны помочь в этом нелегком деле, но все же потребуются годы, чтобы просеять эти тонкие различия и увидеть, как они влияют на охоту за новой физикой.

Физик-теоретик Митио Каку поделился своими мыслями о последних открытиях в своем Twitter.

Также нельзя не отметить реакцию на последние открытия известных физиков-теоретиков в Twitter. Митио Каку, например, считает, что полученные результаты также могут являться подтверждением теории струн. О том, как теория струн стала одной из величайших надежд теоретической физики, а потом пришла в долгосрочный упадок, мы рассказывали в этой статье. Рекомендую к прочтению.

Подробнее..

Действительно ли мир стоит на пороге открытия новой физики?

17.04.2021 20:10:37 | Автор: admin

Физика переживает интересные времена одни исследования показывают, что возможно существует неизвестная науке сила природы, а другие свидетельствуют, что Стандартная модель по-прежнему непоколебима.

Пятнадцать лет назад физики из Брукхейвенской национальной лаборатории обнаружили нечто удивительное. Мюоны тип субатомных частиц двигались неожиданными образом, что не соответствовало теоретическим предсказаниям. С тех пор физики пытались понять почему. Недавно группа исследователей из Fermilab занялась экспериментальной стороной вопроса и 7 апреля 2021 года опубликовала результаты, подтверждающие первоначальное измерение. Ряд исследователей, однако, придерживается другого подхода, полагая, что никакой «новой физики» на горизонте нет. Так, команда ученых в рамках сотрудничества Budapest-Marseille-Wuppertal Collaboration попробовала выяснить, не было ли старое теоретическое предсказание неверным. Для расчета взаимодействия мюонов с магнитными полями был использован новый метод. Если расчеты исследователей верны, то никакого расхождения между теорией и экспериментом нет, как и не открытой силы природы.

Мюон и Стандартная модель

Хотя это и не очевидно, но мюоны более тяжелые и нестабильные сестры электрона окружают нас со всех сторон. Создаются эти субатомные частицы, например, при столкновении космических лучей с частицами в атмосфере нашей планеты. Интересно, что мюоны могут проходить сквозь материю, а ученые используют их для исследования недоступных внутренних структур от гигантских вулканов до египетских пирамид.

Мюоны, как и электроны, обладают электрическим зарядом и генерируют крошечные магнитные поля. Сила и ориентация этого магнитного поля называется магнитным моментом.

Почти все во Вселенной, от строения атомов до работы компьютеров и движения галактик, можно описать с помощью четырех взаимодействий: гравитации; электромагнетизма; слабого взаимодействия, отвечающего за радиоактивный распад; сильного взаимодействия, отвечающего за удержание протонов и нейтронов в ядре атома. Эту структуру ученые называют Стандартной моделью физики элементарных частиц.

Интересно, что все взаимодействия Стандартной модели вносят в свой вклад в магнитный момент мюона, но каждое из них делает это несколькими различными способами, определить которые оказалось невероятно трудно.

Мюоны, обнаруженные в космических лучах, переполошили научное сообщество и даже широкую общественность.

«Большинство явлений в природе можно объяснить с помощью Стандартной модели, отмечает Золтан Фодор, профессор физики в Пенсильванском университете и руководитель исследовательской группы. «Мы можем предсказать свойства частиц чрезвычайно точно, основываясь только на этой теории, поэтому, когда теория и эксперимент не совпадают, мы рассматриваем вероятность того, что обнаружили что-то новое, что-то за пределами Стандартной модели».

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

Магнетическая тайна

В прошлом для расчета магнитного момента мюона физики использовали смешанный подход они собирали данные о столкновениях между электронами и позитронами противоположностью электронов и использовали их для вычисления вклада сильного взаимодействия в магнитный момент мюона. Этот подход использовался для дальнейшего уточнения оценки в течение десятилетий. Последние результаты относятся к 2020 году и дают очень точную оценку.

В исследовании, опубликованном 6 апреля в журнале Nаture, физики применили новый подход, который дает оценку напряженности магнитного поля мюона и близко соответствует его экспериментальному значению. Примечательно, что ученые использовали полностью проверенную теорию, которая была полностью независима от опоры на экспериментальные измерения.

«Мы начали с довольно простых уравнений и построили всю оценку с нуля», пишут исследователи. Новые вычисления потребовали сотен миллионов процессорных часов в нескольких суперкомпьютерных центрах Европы и привели теорию в соответствие с измерениями.

Читайте также: Физики переосмысли строение Вселенной. Темная энергия больше не нужна?

Физики использовали более интенсивный источник мюонов, что дало им более точный результат, который почти идеально соответствовал старому измерению.

Полученные данные существенно сокращают разрыв между теорией и экспериментальными измерениями и, если являются верными, подтверждают главенство Стандартной модели, которая десятилетиями руководила физикой элементарных частиц. Но история на этом не заканчивается, так как теперь полученные результаты должны быть перепроверены другими исследовательскими группами. Но что в итоге?

Новые эксперименты

Важно понимать, что для открытия Новой физики, выходящей за рамки Стандартной модели, существует научный консенсус расхождение между теорией и измерением должно достигать пяти сигм статистической меры, которая приравнивается к вероятности примерно 1 к 3,5 миллионам.

Это интересно: Ученые из ЦЕРН стоят на пороге открытия новой физики

В случае мюона измерения его магнитного поля отклонялись от существующих теоретических предсказаний примерно на 3,7 сигмы. Это, безусловно, интригующе, но недостаточно для того, чтобы объявить о крахе Стандартной модели. Так что в будущем исследователи намереваются улучшить как измерения, так и теорию в надежде либо примирить теорию и измерение, либо увеличить сигму до уровня, который позволил бы объявить об открытии Новой физики.

Подробнее..

Категории

Последние комментарии

© 2006-2021, umnikizdes.ru