Русский
Русский
English
Статистика
Реклама

Нобелевская премия

Существовали ли другие вселенные до Большого взрыва?

13.10.2020 00:08:42 | Автор: admin

По мнению Пенроуза, Вселенная будет продолжать расширяться до тех пор, пока вся ее материя в конечном итоге не распадется, после чего на ее месте возникнет новая.

«До Большого взрыва существовала более ранняя Вселенная, которую сегодня можно наблюдать. Большой Взрыв не был началом», — эти слова произнес английский физик и математик сэр Роджер Пенроуз во время вручения Нобелевской премии по физике в 2020 году. Британская The Telegraph также приводит слова выдающегося ученого: «Что-то существовало до Большого взрыва и это что-то продолжит свое существование в будущем». Нобелевский лауреат считает, что наш Большой взрыв начался с того, что являлось далеким будущим более ранней эпохи. Причина, по которой он так думает, заключается в таинственной физике черных дыр еще в 1964 году, спустя девять лет после смерти Эйнштейна, сэр Роджер предположил, что черные дыры являются неизбежным следствием Общей теории относительности (ОТО). Его новаторская статья до сих пор считается самым важным вкладом в теорию относительности со времен Эйнштейна и доказательства Большого взрыва.

Что такое «точки Хокинга»?

Пенроуз обнаружил шесть «теплых» точек в небе, называемых «точками Хокинга» («hawking points»), диаметр которых примерно в восемь раз больше диаметра Луны. Свое название они получили в честь британского физика-теоретика Стивена Хокинга, который утверждал, что черные дыры «пропускают» излучение и в конечном итоге полностью испаряются. Время, которое требуется черной дыре, чтобы полностью испариться, огромно, возможно, больше, чем возраст нашей нынешней Вселенной, поэтому их нельзя обнаружить. Однако Пенроуз считает, что «мертвые» черные дыры из предыдущих вселенных или «эонов» теперь наблюдаемы. Если он прав, это доказывает правильность теорий Хокинга.

У нас есть Вселенная, которая все расширяется и расширяется. Вся масса в ней распадается и в этой моей сумасшедшей теории это отдаленное будущее становится Большим взрывом другого Эона. Черные дыры в этой другой вселенной могли исчезнуть из-за испарения Хокинга и создать точки в небе, которые я называю точками Хокинга. Мы их видим. Эти точки примерно в восемь раз превышают диаметр Луны и представляют собой слегка прогретые области. На сегодняшний день у нас есть весомые доказательства существования по крайней мере шести из них.

Нобелевский лауареат по физике 2020 года, сэр Роджер Пенроуз.

Ранее в этом году в журнале Monthly Issues of the Royal Astronomical Society вышла работа сэра Пенроуза, посвященная точкам Хокинга. В статье представлены данные наблюдений многочисленных ранее ненаблюдаемых аномальных круглых пятен в космическом микроволном фоновом излучении (реликтовом излучении), со значительно повышенной температурой.

Еще больше увлекательных статей о последних научных открытиях в области теоретической физики, читайте на нашем канале Google News.

Реликтовое излучение это, по сути, электромагнитное излучение, оставшееся от самой ранней космологической эпохи, которая пронизывает всю вселенную. Считается, что реликтовое излучение сформировалось примерно через 380 000 лет после Большого Взрыва и содержит тонкие указания на то, как формировались первые звезды и галактики.

Точки Хокинга это, по сути, погибшие черные дыры, которые существовали до Большого взрыва (породившего нашу Вселенную) и которые пережили свои собственные Вселенные. Однако теперь они находятся на исходе своей жизни и испускают излучение, испаряясь в ничто. Нобелевский лауреат отмечает, что «наш Большой взрыв начался с чего-то, что было отдаленным будущим предыдущего Эона (Вселенной), и в ней были бы такие же черные дыры, как в нашей Вселенной, проходящие через испарение Хокинга. Именно они произвели бы эти точки в небе, которые я называю точками Хокинга.»

Вам будет интересно: Может ли Вселенная существовать бесконечно?

Спорная теория

Как отмечает The Telegraph, эта идея спорна, хотя многие ученые считают, что Вселенная существует в непрерывном цикле расширения, происходящем до «Большого сжатия», за которым следует новый Большой взрыв. Пенроуз также отметил, что в прошлом черные дыры считались теоретически существующими объектами. Подробнее о том, как выглядит черная дыра и как ученым удалось ее сфотографировать читайте в этой статье.

В 1988 году Роджер Пенроуз разделил премию Вольфа по физике с профессором Стивеном Хокингом за совместную работу над черными дырами.

Сэр Роджер разделил Нобелевскую премию по физике с профессорами Рейнхардом Герцелем из Института внеземной физики Макса Планка и Андреа Гез из Калифорнийского университета, которые доказали, что в центре Млечного Пути находится сверхмассивная черная дыра Стрелец А (Sagittarius A*).

Напомним, что черные дыры являются самыми таинственными объектами во Вселенной, не считая, конечно, темной энергии и темной материи. В 2017 году Нобелевскую премию по физике вручили ученым коллабораций LIGO и VIRGO за открытие гравитационных волн ряби пространства-времени, вызванной столкновением двух сверхмассивных черных дыр. Это открытие положило начало новой эре исследований гравитации.

Подробнее..

Нобелевская премия по физике 2022 квантовая запутанность и телепортация

07.10.2022 00:10:39 | Автор: admin

Нобелевскую премию по физике 2022 года вручили за изучение квантовой запутанности и технологий

«Квантовая физика настолько сложная, что ее никто не понимает», писал нобелевский лауреат Ричард Фейнман. И это не удивительно, так как даже Альберт Эйнштейн относился к ней настороженно, называя феномен квантовой запутанности «сверхъестественным» и «жутким». В вероятностной природе квантовой механики сомневался ирландский физик-теоретик Джон Белл и другие основоположники этой теории. Но несмотря на споры и разногласия, таинственный мир элементарных частиц стал драйвером современной цивилизации: интернет, компьютеры, смартфоны, лазеры, оптоволоконные сети и атомная энергетика существуют благодаря науке о квантах. Только представьте к чему могут привести дальнейшие открытия, которых с каждым годом становится все больше. Так, в 2022 году лауреатами Нобелевской премии по физике стали стразу трое ученых, которые независимо друг от друга проводили эксперименты с запутанными фотонами, сенсорными технологиями и безопасной передаче информации. К слову, не обошлось без квантовой телепортации, но обо всем по-порядку.

Нобелевская премия 2022

Каждый год Шведская королевская академия наук отмечает выдающиеся открытия в разных областях науки, способствуя ее развитию и популяризации в обществе. Всего за несколько лет научно-технический прогресс позволил физикам подтвердить существование черных дыр и гравитационных волн, разработать физические модели климата Земли и даже обнаружить далекие экзопланеты на орбите солнцеподобных звезд каждое из этих открытий удостоилось награды Нобелевского комитета.

Напомним, что Нобелевскую премию присуждают за открытия в области физиологии и медицины, физики, химии, экономических наук, литературы и миротворческой деятельности. Подробнее о премии и ее основателе мы рассказывали здесь, рекомендуем ознакомиться

Квантовая запутанность возникает в тот момент, когда две или более частицы становятся связанными между собой.

В 2022 году лауреатами Нобелевской премии по физике стали Ален Аспе, Джон Клаузер и Антон Цайлингер. Трое физиков удостоились награды за эксперименты по квантовой запутанности, в основе которых лежат труды таких выдающихся ученых как Нильс Бор, Альберт Эйнштейн и Джон Белл все они хотели понять природу странного поведения элементарных частиц, способных находиться далеко друг от друга сохраняя между собой связь.

Как отмечают представители Шведской королевской академии наук, в будущем работы Аспе, Клаузера и Цайлингера сыграют важную роль в области квантовых вычислений и безопасной передачи данных, открывая новую главу в истории квантовой механики. Интересно, что исследователи работали независимо друг от друга пытаясь объяснить «жуткий» феномен запутанных элементарных частиц.

Больше по теме: Тайны квантовой механики что такое квантовая запутанность?

Запутанность и неравенство

Итак, согласно принципам квантовой механики, частицы могут существовать одновременно в двух местах или более, а также не приобретают формальных свойств до тех пор, пока за ними не наблюдают. Но стоит кому-то проследить за положением или вращением одной элементарной частицы, как он становится наблюдателем за ее партнером (вне зависимости от расстояния между частицами). Именно это взаимодействие делает квантовую механику похожей на магию. Но как разобраться в причинах этого явления?

Квантовая механика на примере обыкновенных мячей

Представим машину, внутри которой находятся два запутанных мяча и мы их не видим. Единственное, что о них известно это серый цвет и две возможные характеристики мячи могут быть только белого и черного цвета. Но стоит машине одновременно выбросить их в противоположных направлениях, как наблюдатель ловит мяч и видит что он белый в эту же секунду второй мяч становится черным.

Вам будет интересно: Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?

Объяснить это странное явление удалось с помощью «неравенства Белла», согласно которому частицы могут содержать секретную информацию или скрытые переменные, определяющие их свойства. Если Белл прав, то в системе должны присутствовать скрытые параметры, подтверждая гипотезу локального реализма при которой физические объекты существуют и оказывают влияние на свое ближайшее окружение.

Безумные эксперименты

В 1972 году Джон Клаузер и его покойный коллега Стюарт Фридман решили проверить предположения Белла показав, что частицы, в данном случае фотоны, не содержат скрытой информации. Подход американских физиков заключался в передаче свойств одной частицы к другой, несмотря на большие расстояния между ними.

Если объяснять на мячах, то в приведенном выше сценарии скрытой информации об их свойствах не существует. При этом цвет мяча, попавшего в руки наблюдателя, будет определен случайно. Стоит ли говорить, что в 1970-е годы академическое сообщество не воспринимало всерьез подобные предположения.

Квантовая запутанность может объяснить как устроен мир на уровне атомов

Мой научный руководитель считал, что эксперименты с запутанностью ужасная трата времени и что я разрушаю свою карьеру, рассказал Клаузер в интервью The Washington Post.

К счастью, Клаузер не был единственным физиком, заигрывающим с запутанностью его французский коллега Ален Аспе из Университета Париж-Сакле проводил похожие эксперименты в 1980-х, а Антон Цайлингер из Венского университета в 1990-х изучал запутанные квантовые системы, включающие в себя больше двух частиц. Он предположил, что запутанные состояния являются ключом к созданию новых способов хранения, передачи и обработки информации.

Не пропустите: Что квантовая физика может рассказать о природе реальности?

Квантовая информация

Представители Нобелевского комитета уверены, что в будущем новаторские эксперименты могут привести к созданию квантовой телепортации. Звучит провокационно, так что поясним речь не идет о телепортации человека из одного места в другое, как, например, в сериале «Звездный Путь». Увы, но такая телепортация удел научной фантастики.

Как объясняют Аспе, Клаузер и Цайлингер, феномен запутанности квантовых частиц может переносить информацию об объекте из одного места в другое, однако с крупными объектами подобное невозможно на сегодняшний день ученые могут перемещать только частицы вне зависимости от их массы (из-за принципа организации атомов).

Лауреаты Нобелевской премии по физике 2022 года: французскийученыйАлен Аспе, физик из Австрии Антон Цайлингери американский исследователь Джону Клаузер

Проведенные эксперименты показали, что поведение запутанных квантовых частиц полностью противоречит нашим представлениям о том, как должны вести себя независимые отдельные объекты, указано в заявлении Нобелевского комитета.

Но что насчет квантовых технологий? В 2016 году бывший ученик Цайлингера Цзянь-Вей Пан возглавил китайскую группу исследователей, которая запустила на орбиту спутник Micius с парой фотонов, расстояние между которыми составило более 1000 километров и не изменило их запутанного состояния.

Квантовая телепортация позволяет перемещать квантовое состояние от одной частицы к другой, являясь единственным способом передачи квантовой информации без единой потери.

Квантовая телепортация позволяет перемещать квантовое состояние от одной частицы к другой на расстоянии.

В это трудно поверить, но подобная демонстрация квантовых свойств прокладывает путь к созданию новейших инструментов по передаче информации, тотально защищенной от «взлома». Исследователи надеются, что в будущем все больше устройств покинут лаборатории и покорят реальный мир. В конечном итоге потенциальное применение принципов квантовой механики кажется безграничным. А как вы думаете, какие открытия ожидают нас в будущем? Ответ, как и всегда, ждем здесь и в комментариях к этой статье!

Подробнее..

Как палеогенетика помогла расшифровывать ДНК древних людей?

12.10.2022 16:12:01 | Автор: admin

Современные люди унаследовали часть ДНК от неандертальцев

В каждом из нас что-то от неандертальцев. К такому выводу пришел шведский палеогенетик Сванте Паабо, за что удостоился Нобелевской премии по физиологии и медицине. Отныне эта новая область исследований, находящаяся на стыке археологии и молекулярной генетики, позволяет изучать древнюю ДНК в биологических останках и ископаемых организмах. Вклад Паабо в эту дисциплину огромен на протяжении нескольких десятилетий он занимался разработкой химических и биоинформационных материалов, с помощью которых удалось обнаружить, что геном современных людей содержит следы ДНК вымерших родственников, отделившихся от наших предков сотни тысяч лет назад. Оказалось, что неандертальцы и Homo sapiens скрещивались на протяжении тысячелетий совместного существования. По этой причине от 1% до 4% генома современных людей происходит от неандертальцев. Но вот что особенно интересно эти унаследованные гены имеют физиологическое значение и сегодня, например, влияя на то, как наша иммунная система реагирует на инфекции.

Секвенирование генома исследование всей последовательности ДНК человека для определения мутаций (генетических повреждений в ДНК), которые являются причиной особенностей организма и наследственных болезней.

Что такое палеогенетика?

Большая часть истории человечества охватывает около 200 000 лет. Мы знаем об этом благодаря сохранившимся свидетельствам во время эпохи голоцена (12,000 лет назад) теплая погода и относительно стабильный климат способствовали зарождению земледелия, городов, государств и других признаков цивилизации, однако письменность была скорее исключением.

Чтобы узнать больше о нашем далеком прошлом, историки опираются на архивы, а археологи по кусочкам собирают такие сохранившиеся материалы как керамика, посуда, оружие и погребальные принадлежности. Подобные артефакты разбросаны по миру и нередко сбивают ученых с толку.

В 1999 году Сванте Паабо основал (и до сих пор возглавляет) Институт эволюционной антропологии Макса Планка в Лейпциге.

Вещи, обнаруженные при раскопках, могут предоставить массу информации о жизни древних людей, однако определить с их помощью этническую принадлежность и миграции невозможно. Но благодаря внедрению новых мощных методов изучения древней ДНК, все изменилось.

Интересный факт
Паабо сын Нобелевского лауреата Суне Бергстром, которая удостоилась премии в 1982 году за открытие простагландинов биохимических соединений, влияющих на артериальное давление, температуру тела, аллергические реакции и другие физиологические явления.

За последние пять лет произошла настоящая революция в доступности и масштабах генетического тестирования, которое можно проводить на останках доисторических людей и животных. Секвенирование генома, как известно, позволяет собрать намного больше данных, чем другие тестирования и позволяет проводить подробные сравнения между отдельными людьми и популяциями.

Все мы немного неандертальцы

Первый результат секвенирования генома был получен в 2010 году. Он показал, что у современных людей из Европы и Азии в среднем 2% общей ДНК с неандертальцами. Этот подход также позволил обнаружить Денисовского человека (лат. Homo denisovensis) ранее неизвестный вид древних людей, связь с которым унаследовали жители Азии и Австралии. Удивительным образом палеогенетика открывает нам далекое прошлое, одновременно прокладывая путь в будущее.

Больше по теме: Эволюция человека как изменятся наши лица в будущем?

Нобелевская премия 2022

Всего несколько десятилетий назад восстановление ДНК из костей возрастом 40 000 лет считалось невозможным, так как со временем ДНК распадается на множество более коротких фрагментов, значительно затрудняя идентификацию подлинных генетических изменений. Стоит ли говорить насколько это сложная задача, к которой приковано всеобщее внимание.

Чтобы определить структуру генома необходимо выделить ДНК и подвергнуть ее обработке для получения информации с помощью специального прибора секвенатора. При этом использование древней ДНК не ограничивается нашими близкими родственниками и позволяет отследить эволюцию человека с древнейших времен.

Не пропустите: Эволюция иногда поворачивает назад: как рыбы с суши вернулись в воду

С помощью секвенирование генома мы узнаем много нового о наших далеких предках

Несколько десятилетий назад Паабо и его команда использовали новый метод изучения древней ДНК, продолжив разработку способов ее извлечения из окаменелых образцов и генетического материала. В конечном итоге их подход позволил извлекать все более древние участки генома у животных и предках человека, включая неандертальцев.

Основополагающие исследования Паабо породили совершенно новую научную дисциплину палеогенетику. Выявляя генетические различия, которые отличают всех живых людей от вымерших гоминидов, а. его открытия создают основу для изучения уникальности нашего вида, отметил Нобелевский комитет.

Нельзя не отметить и особый подход Паабо к работе благодаря содержанию лабораторий в чистоте, независимому повторению и воспроизведению результатов в разных лабораториях, группа Паабо избежала ряда ошибок, которые беспокоили исследователей в этой области.

Хотите всегда быть в курсе последних открытий в области науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram и вы точно не пропустите ничего интересного!

Невозможное возможно

Нобелевская премия по физиологии и медицине, помимо прочего, стала очередным подтверждением теории эволюции мы знаем, что первые представители Homo sapiens появились в Африке около 300 000 лет назад. В то время наши ближайшие родственники, неандертальцы, проживали за пределами Африки, заселив Европу и Западную Азию. Выходит, около 70 000 лет назад группы Homo sapiens и неандертальцев сосуществовали на больших территориях Евразии на протяжении десятков тысяч лет.

Извлечь из древних костей геном и прочитать его задача, грандиозная не только по важности, но и по трудности.

Как показали полученные результаты, последний общий предок неандертальцев и Homo sapiens жил на Земле около 800 000 лет назад по этой причине последовательности ДНК неандертальцев больше похожи на последовательности ДНК современных людей, происходящих из Европы или Азии, чем на последовательности ДНК обитателей Африки.

Когда Homo sapiens мигрировал из Африки, по крайней мере две вымершие популяции гоминидов населяли Евразию: неандертальцы жили в западной части континента, тогда как денисовцы населяли его восточные части, объясняет лауреат Нобелевской премии.

Ранее ученые установили, что в Денисовой пещере обитали и неандертальцы.

Напомним, что обнаружение останков Денисовского человека, также принадлежит Паабо и его коллегам в 2008 году они занимались секвенированием фрагмента кости возрастом 40 000 лет, обнаруженного в Денисовой пещере на юге Сибири.

Подробнее об открытии новых видов древних людей можно прочитать здесь.

«До недавнего времени может быть, 1400 поколений назад исчезнувшие с лица планеты гоминиды смешались с нашими предками и внесли свой вклад в нас с вами», говорит Нобелевский лауреат. Выходит, у современных людей европейского или азиатского происхождения от 1% до 4% генома происходит от неандертальцев. Вот такие чудеса науки, здорово, правда?

Подробнее..

Нобелевский лауреат откроет в России исследовательскую лабораторию чем она займется

05.03.2021 22:04:57 | Автор: admin

Нобелевский лауреат и российский олигарх хотят возродить фундаментальную науку в России

Имя Константина Новосёлова хорошо известно не только каждому российскому учёному, но и всему мировому научному сообществу. Именно он в 2004 году открыл новую аллотропную модификацию углерода графен, который представляет собой одинарный слой атомов углерода. А через 6 лет, в 2010 году, был удостоен Нобелевской премии по физике за передовые опыты с этим материалом. И есть за что, ведь графен не только самый прочный, самый легкий и электропроводящий вариант углеродного соединения, он также может стать отличной заменой кремнию, особенно в полупроводниковой промышленности. Новосёлов мировой учёный, который работает в ведущих лабораториях мира, является почётным членом Национальной Академии Наук США и даже получил от королевы Елизаветы II титул рыцаря-бакалавра за заслуги перед наукой. При этом он родился и вырос в СССР и не забывает о родных местах: скоро в России откроется научная лаборатория под его руководством.

Чем займётся лаборатория Константина Новосёлова в России

Перед новой лабораторией Константин Новосёлов хочет поставить сразу несколько задач. Первое проведение непосредственно научных исследований, а именно разработка продвинутых умных материалов, и всё это да, на основе графена. В лаборатории займутся созданием двумерных структур с программируемыми свойствами, таких технологий больше нет нигде в мире. России будет чем ответить США и другим странам, где разрабатывают альтернативные источники энергии и запускают ракеты на Марс. Исследования, которые будут проводиться в новой лаборатории, могут стать фундаментом для новых научных открытий.

Такие материалы могут использоваться в нейроморфных компьютерах, объясняет Новосёлов. Также они позволят создавать интерфейсы с живыми объектами, что поможет по-новому исследовать, например, человеческий мозг.

Константин Новосёлов — лауреат Нобелевской премии по физике

Лаборатория будет создана на базе Центра изучения мозга и сознания и основательно займётся исследованием человеческого мозга с помощью искусственных сверхчувствительных сенсоров.

Развитие фундаментальной науки является очень важным, и открытие такой лаборатории в России определённо пойдёт на пользу всему российскому научному сообществу. В отличие от стартапов-однодневок из Кремниевой долины, которые нацелены на быстрое получение прибыли, фундаментальные исследования как раз являются основой науки и новых открытий. Именно они меняют наш мир. Например, именно фундаментальная наука доказала в 2011 году, что Земля не уникальна, что только в одной нашей галактике могут присутствовать миллиарды потенциально обитаемых планет. А в 2012 году было открыто существование бозона Хиггса, так называемой частицы Бога. Перезаписываемые гены, гравитационные волны, даже изменение воспоминаний все эти открытия стали возможны благодаря фундаментальной науке. В ближайшие годы в рамках фундаментальных научных исследований будут совершены и другие научные прорывы.

Графен действительно обладает большим потенциалом и способен произвести революцию в технологиях

Решить проблему утечки мозгов

Сам Нобелевский лауреат признаёт, что очень рад открытию лаборатории именно в России, на свой родине. Новая лаборатория поможет российским учёным, в том числе молодым специалистам, реализовать себя, предоставит необходимые средства и инструменты для новых научных открытий, чтобы вернуть России потенциал научной сверхдержавы. Впервые за долгое время есть надежда на то, что Россия действительно включится в технологическую гонку на деле, а не на словах.

Таким образом молодые перспективные специалисты смогут раскрыть свой потенциал на родине, что, в свою очередь, может помочь решить проблему с утечкой мозгов, которая становится только больше с 2000 года. Не исключено, что на базе лаборатории Новосёлова будут открыты и другие исследовательские центры.

Зачем инвестировать в фундаментальную науку?

Почему ещё есть надежда на то, что этот проект выстрелит? Он будет развиваться не на государственные, а на частные средства. Инициатором лаборатории выступил российский бизнесмен Владимир Потанин, который уже выделил 500 миллионов рублей на создание и функционирование лаборатории, в том числе и на исследования. Этих денег хватит на 5 лет работы проекта, а впоследствии могут подключиться и другие инвесторы. Сейчас они в основном вкладываются в конкретные прикладные разработки с их скорой коммерческой отдачей, но когда потенциал фундаментальной науки в России хоть немного раскроется, инвесторы сами будут выстраиваться в очередь. Пример SpaceX показал, как частная компания, финансируемая из частных средств, может добиться успеха в науке.

Как говорит сам Потанин, инвестирование фундаментальной науки позволит создать важный задел на будущее для России, и он видит в этом направлении большой потенциал.

Владимир Потанин верит в развитие фундаментальной науки в России

Это очень интересная тема, у которой в перспективе много прикладных историй. И мне близка идея возврата в Россию талантов и мозгов, которые за последние десятилетия утекли на Запад. К тому же Нобелевский лауреат это знак качества, значит, мы занимаемся действительно востребованным, нужным делом.

Ученые прекрасно понимают, что важнейшая часть этого прогресса будет также зависеть от возможности обмениваться своими мыслями, идеями и открытиями с простой общественностью. И поскольку доступ к знаниям с помощью новой лаборатории становится действительно универсальным, это лишь сильнее усиливает такое желание.

Подробнее..

История одной премии хаос, климатические модели и сложные системы

08.10.2021 02:04:41 | Автор: admin


0
5 октября Нобелевский комитет определил лауреатов премии 2021 года по физике.

Каждый год СМИ сообщают о вручении той или иной Нобелевской премии в одной из пяти научных областей. Эти новости (знаю по себе) обычно остаются незамеченными среди бесчисленных инфоповодов со всех уголков земного шара. «Ну вручили и вручили, думаем мы, пролистывая ленту перед сном или за чашечкой утреннего кофе что там еще интересного-то»? Между тем, такое отношение к выдающимся интеллектуальным достижениям вряд ли можно счесть удовлетворительным. Да, мы привыкли к быстрому контенту два поста здесь, три репоста там, обязательно поставить лайк подруге и еще не забыть посмотреть серию любимого сериала. Но. Но! Готова поспорить, на самом деле вряд ли можно найти тему интереснее, чем Нобелевская премия. Судите сами химик и инженер, отец которого трудился над разработкой торпед, приобрел металлургический концерн, который впоследствии превратил в крупнейшего производителя вооружения в стране. Но больше всего прибыли ему принесло изобретение динамита. Да-да, Альфред Нобель и завещание свое придумал не просто так. Дело в том, что в 1888 году его «похоронили заживо». Когда его брат Людвиг погиб в Каннах, журналисты по ошибке разместили в газетах объявление о смерти не Людвига, а Альфреда Нобеля. Прочитав некролог, он с ужасом обнаружил, что его назвали «торговцем смертью». Именно тогда наш герой задумался над тем, каким его запомнит человечество.

История одной премии

Сегодня имя Альфреда Нобеля ассоциируется у большинства из нас с выдающимися научными достижениями. Но кто знает, стало бы это возможным не ошибись один неизвестный истории репортер. Ведь именно после того, как миллиардер прочел собственный некролог, он решил изменить завещание. Согласно новому завещанию, составленному Нобелем в 1895 году, большая часть его состояния отходила в фонд для присуждения пяти ежегодных премий «тем, кто в течение предыдущего года принес наибольшую пользу человечеству».

Завещание Альфреда Нобеля

Все мое движимое и недвижимое имущество должно быть обращено моими душеприказчиками в ликвидные ценности, а собранный таким образом капитал помещен в надежный банк. Доходы от вложений должны принадлежать фонду, который будет ежегодно распределять их в виде премий тем, кто в течение предыдущего года принес наибольшую пользу человечеству. Указанные проценты необходимо разделить на пять равных частей, которые предназначаются: одна часть тому, кто сделает наиболее важное открытие или изобретение в области физики; другая тому, кто сделает наиболее важное открытие или усовершенствование в области химии; третья тому, кто сделает наиболее важное открытие в области физиологии или медицины; четвертая тому, кто создаст наиболее выдающееся литературное произведение идеалистического направления; пятая тому, кто внес наиболее существенный вклад в сплочение наций, уничтожение рабства или снижение численности существующих армий и содействие проведению мирных конгрессов. Мое особое желание заключается в том, чтобы при присуждении премий не принималась во внимание национальность кандидатов.

Химик, инженер и избиратель Альфред Нобель.

Этими премиями, учрежденными по его завещанию, являются Нобелевская премия по физике, Нобелевская премия по химии, Нобелевская премия по физиологии или медицине, Нобелевская премия по литературе и Нобелевская премия за мир. Первое распределение премий состоялось 10 декабря 1901 года, в пятую годовщину смерти Нобеля.

Это интересно: Шкала Ландау умнейшие физики ХХ века

Как видите, Альфред Нобель, несмотря на создание динамита и владение крупнейшим заводом вооружений, был глубоко озабочен не только тем, каким его запомнят будущие поколения. Его решение о создании подобной премии в конечном итоге позволило объединить ученых из разных уголков мира и тем самым продвинуть науку (а вместе с ней и нашу цивилизацию) вперед, причем семимильными шагами. А вот многочисленные родственники Нобеля сочли себя обделенными и требовали признать завещание недействительным.

Эта история, однако, напоминает мне историю советского физика-теоретика Андрея Сахарова, лауреата Нобелевской премии мира 1975 года. Руководство СССР говорило о нем следующее: «этот человек вооружил нашу страну самым мощным в истории оружием, что сделало Советский Союз одной из двух супердержав». Участвуя в разработке первой водородной бомбы СССР, Сахаров, впоследствии, обрел статус диссидента и выступал за мир и ядерное разоружение.

Оригинальная обложка романа «Колыбель для кошки»

Интересный факт
В 1963 году писатель-фантаст Курт Воннегут в своем романе "Колыбель для кошки" поставил вопрос об отвественности ученых за свои изобретения. Сюжет произведения строится вокруг гениального изобретения доктора Феликса Хониккера вещества под названием "Лед-9", которое представляет собой кристаллическую модификацию воды с температурой плавления 45,8C. Один крошечный кристалл "Льда-9", попав в любой водоем, неизбежно приведет к гибели всего живого на Земле.

Таким образом, сама история создания Нобелевской премии является не просто «забавной (интересной и проч) историей», а поводом задуматься о таких серьезных вещах, как глобальное будущее человечества и ответственность за собственные действия и поступки.

Нобелевская премия по физике 2021

Интересно, что именно ответственность за изобретения и их использование стала одной из тем Нобелевской премии по физике 2021 года. Да, наконец-то можно говорить тем, кто отрицает глобальное потепление, что за создание климатических моделей, позволяющих предсказать будущие явления, вручили Нобелевскую премию. Так что щах и мат, отрицатели, но что-то я увлеклась.

Лауреаты Нобелевской премии 2021 года.

Итак, в этом году Нобелевская премия по физике присуждена одной половиной Сюкуро Манабе и Клаусу Хассельманну, а другой половиной Джорджо Паризи. Эти исследователи заложили основу наших знаний о климате Земли и о том, как человечество влияет на него, а также произвели революцию в теории неупорядоченных материалов и случайных процессов. Согласна, вторая часть звучит несколько сложнее первой. Но эта сложность должна лишь раззадоривать наше любопытство, а не наоборот, так что начнем.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram, чтобы не пропустить ничего интересного!

Климатические модели

Общая картина изменения климата достаточно проста: удерживающие тепло газы в атмосфере превращают Землю в метафорическую теплицу, заставляя планету нагреваться. Но то, как именно произойдет это потепление через океаны планеты, ледяные щиты, горы, леса и города, подпитываемые всем, от утечек метана до двуокиси углерода чрезвычайно запутанно.

Мы погружены в сложность в каждом масштабе, который наблюдаем, и как ученые, спрашиваем: сколько деталей требуется для объяснения наблюдений? Должны ли мы отслеживать каждую молекулу воды, чтобы объяснить существование океана? заявил физик из Йельского университета Джон Веттлауфер на пресс-конференции, объявляющей о присуждении премии.

Сюкуро Манабе в Швеции в 2018 году. Он продемонстрировал, как повышенный уровень углекислого газа в атмосфере приводит к повышению температуры на поверхности Земли.

На самом деле сложные физические системы, такие как климат, часто определяются их беспорядком. Лауреаты этого года помогли миру разобраться в том, что казалось хаосом, описав эти системы и предсказав их долгосрочное поведение. Как пишет The New York Times, в 1967 году доктор Манабе разработал компьютерную модель, которая подтвердила критическую связь между основным парниковым газом двуокисью углерода и потеплением атмосферы.

Больше по теме: Все модели изменения климата показывают, что катастрофа стремительно приближается. Но почему?

Именно эта модель проложила путь для других, все более сложных. Более поздние модели доктора Манабе, в которых исследовались связи между условиями в океане и атмосферой, имели решающее значение для понимания того, как усиленное таяние ледяного покрова Гренландии может повлиять на циркуляцию океана в Северной Атлантике.

Клаус Хассельманн, немецкий физик и исследователь климата, на пресс-конференции в Мадриде в 2010 году. Он создал модель, которая связывает погоду и климат.

Примерно через десять лет после основополагающей работы доктора Манабе, его коллега физик Клаусс Хассельманн создал модель, которая связала краткосрочные климатические явления другими словами, дождь и другие виды погоды с долгосрочным климатом, таким как океанские и атмосферные течения.

Впоследствии его работа заложила основу для научных исследований, направленных на установление влияния изменения климата на конкретные события, такие как засухи, волны жары и сильные ливни.

Словом, недооценить работу Нобелевских лауреатов сложно. Это особенно хорошо знают наши постоянные читатели, так как мы часто пишем о климатических изменениях и моделях, с помощью которых эти изменения можно отследить. Кстати, результаты нового исследования, опубликованного в научном журнале Global Change Biology, показали, что если усилия по борьбе с глобальным потеплением останутся на нынешнем уровне, к 2500 году человечество может исчезнуть с лица Земли.

Скрытые закономерности

Другая половина Нобелевской примени присуждена за открытие в начале 1980-х годов «скрытых закономерностей в неупорядоченных сложных материалах», что сокрыты за кажущимися случайными движениями и завихрениями в газах или жидкостях. Его работа являются важным вкладом в теорию сложных систем, а также примечательно тем, что ее аспекты можно применить к нейробиологии, машинному обучению и формированию полета скворцов.

«Джорджио Паризи награжден за его революционный вклад в теорию неупорядоченных материалов и случайных процессов», говорится в заявлении Королевской Шведской академии наук.

Итальянский физик-теоретик Джорджо Паризи. Система, которая была им рассмотрена около 1980 года, называется спиновым стеклом, хотя разработанные методы и сформулированные принципы оказались применимыми к значительно более широкому спектру объектов.

Доктор Паризи итальянский физик-теоретик, родившийся в 1948 году в Риме, чьи исследования были сосредоточены на квантовой теории поля и сложных системах. Он получил степень доктора философии в Римском университете Сапиенца в 1970 году. Является профессором Римского университета Сапиенца.

Читайте также: Что квантовая физика может рассказать о природе реальности?

Итак, какие системы ученые называют сложными? Те, что состоят из множества частей, взаимодействующих друг с как самостоятельные элементы. Их одновременное взаимодействие, будучи разнонаправленным, придает сложной системе ее отличительную черту, а именно появление новых свойств, которые отсутствуют на уровне отдельных элементов и не сводятся к характеристикам элементов, составляющих систему.

Уже исходя из одного определения, можно понять, насколько сложная эта тема. И описать ее с помощью математики невероятно трудно, ведь необходимо учесть все возможные варианты взаимодействия элементов друг с другом. А элементы, как известно, часто ведут непредсказуемо, так что в любой системе огромную роль играет Его Величество Случай.

Церемония вручения Нобелевской премии по физике, 2021 год.

Есть еще одна характеристика сложных систем: при взаимодействии со сложной системой одни и те же действия могут давать разный результат. В зависимости от состояния, в котором система находилась изначально. Все вышеописанное означает, что чтобы предсказать, как сложная система поведет себя в будущем, необходимо учесть огромное количество факторов, причем зачастую неизвестных.

Но около 40 лет назад Джорджо Паризи доказал, что совершенно случайные на первый взгляд факторы связаны между собой и даже подчиняются определенным правилам. Если попробовать объяснить совсем простыми словами, то работа итальянского физика позволяет свести воедино все неизвестные переменные. Их объединение, например, в «общий фактор неопределенности» значительно повышает точность не только расчетов, но и предсказаний.

Не пропустите: Почему физики считают, что мы живем в Мультивселенной?

Что вновь возвращает нас к предыдущим лауреатам и их работе по климатическому моделированию: работа Паризи позволяет климатологам строить значительно более точные модели происходящих климатических изменений, как в результате антропогенной деятельности, так и множество других факторов.

Развитие физического познания охватывает все новые области действительности. И физика сложных систем как раз одно из них.

В заключении же хочу сказать, что работа итальянского физика демонстрирует нам, что «понять лес, созерцая дерево не сложно. На самом деле это невозможно». Порядок, отмечает Паризи, существует только на соответствующем масштабе и хаос «на нижнем уровне» ему не помеха. Безусловно, можно искать закономерности и в климате и погоде но лишь на уровне статистики и учтя при этом множества прочих факторов сложные системы требуют неординарных решений.

Подробнее..

Категории

Последние комментарии

© 2006-2024, umnikizdes.ru