Русский
Русский
English
Статистика
Реклама

Частицы

На Большом адронном коллайдере обнаружены экзотические Х-частицы. Почему это важно?

04.02.2022 16:10:50 | Автор: admin

«Частица Икс» с незапамятных времен обнаружена внутри Большого адронного коллайдера

Наша история началась с Большого взрыва около 14 миллиардов лет назад. Согласно теории, за миллионные доли секунды после своего рождения Вселенная представляла собой плазму из элементарных частиц глюонов и кварков. Затем за очень короткий промежуток времени эта плазма остыла, а из ее частиц образовались известные нам протоны и нейтроны. Компанию им составили различные нестабильные частицы неизвестной структуры так называемые частицы Х, о существовании которых мир узнал в 2003 году. Тогда японский коллайдер Belle предоставил первые свидетельства существования X-частиц. Эти частицы, однако, распадались слишком быстро, так что изучить их структуру физикам не удалось. Теперь же ученые смогли воссоздать материю первых мгновений жизни Вселенной и наконец обнаружили загадочные частицы. Здорово, не так ли? Вот только плохо изученные частицы не вписываются в существующие модели формирования вещества.

Как проверить квантовую теорию?

Большой адронный коллайдер в ЦЕРН позволил исследователям проводить по-настоящему удивительные эксперименты, проверяя верна ли квантовая теория. Так, с помощью БАК был обнаружен знаменитый бозон Хиггса, а обнаружение предсказанных частиц Х стало настоящим прорывом.

В поисках таинственных частиц неизвестной структуры, физики из Массачусетского технологического института (MIT) создали в коллайдере кварк-глюонную плазму, сталкивая на огромной скорости ионы свинца. Эти столкновения породили десятки тысяч самых разных частиц. Но как среди них поймать Х-частицы, которые, только возникнув, мгновенно распадаются?

Постепенно возникли частицы и взаимодействия, образующие наш Мир.

Используя методы машинного обучения для анализа более 13 миллиардов столкновений тяжелых ионов, ученые смогли точно определить 100 частиц «X» особого типа частиц под названием X (3872), названных в честь предполагаемой массы частицы. Каждое из этих 13 миллиардов столкновений, вероятно, породило десятки тысяч заряженных частиц.

Хотите знать больше о последних научных открытиях в области квантовой механики? Подписывайтесь на наш канал в Telegram так вы точно не пропустите ничего интересного!

С помощью программы, которая смогла просеять чрезвычайно плотный набор данных, ученым удалось выбрать ключевые переменные, которые, вероятно, были результатом распада X-частиц. Они увеличили масштаб сигналов и наблюдали пик при определенной массе, указывающий на их присутствие. Результаты исследования опубликованы в журнале Physical Review Letter.

Таинственная частица откроет нам представление о самых ранних моментах существования Вселенной.

Результаты нового исследования позволят ученым заглянуть в самое сердце Большого взрыва. Кварк-глюонная плазма заполнила вселенную в первые миллионные доли секунды ее жизни, еще до того, как сформировалось то, что мы называем материей молекулы, атомы или даже протоны или нейтроны, объясняют физики.

Это интересно: Наблюдатель без наблюдателя: как отследить квантовые частицы?

Структура Х-частиц

Итак, при чрезвычайно высоких температурах триллионы градусов протоны, нейтроны и другие подобные им частицы распадаются и растворяются в высокоэнергетической суспензии кварков и глюонов (кварк-глюонная плазма). Один из методов, примененных физиками, стало столкновение тяжелых ионов: столкновение атомных ядер друг с другом на очень высоких скоростях.

Эксперименты на БАК заключались в том, чтобы разбивать тяжелые атомы свинца вместе, которые оставляли после себя следы информации в кварк-глюонной плазме ее создание стало возможным только в XXI веке, однако обнаружить в ней что-либо чрезвычайно сложно.

Никто раньше не пытался обнаружить X-частицы (3872) при столкновениях тяжелых ионов, так как это очень сложная задача, рассказали физики в пресс-релизе исследования.

Частица была создана внутри Большого адронного коллайдера в ЦЕРНе.

Так как ядра атомов содержат скопления протонов и нейтронов, частицы на самом деле состоят из еще более крошечных частиц кварков. Для образования более крупных частиц, кварки связываются с глюонами еще более мелкими частицами, действующими как агенты малой ядерной силы.

Читайте также: Могут ли странные квантовые объекты объяснить наше существование?

Некоторые физики полагают, что X(3872) может быть частицей с четырьмя кварками: тетракваркоми. Типичные протоны и нейтроны состоят из трех кварков, но тетракварки странные, и обычно им требуются высокие энергии, чтобы оставаться вместе. В последнее десятилетие физики наблюдали другие примеры тетракварков в ускорителях частиц, подробнее можно прочитать здесь.

Частица была создана внутри Большого адронного коллайдера в ЦЕРН.

Не исключено также, что X-частицы (3872) на самом деле состоят из мезонов. Это еще один тип субатомных частиц, которые состоят из одного кварка и одного антикварка двойника кварка из антивещества. Мезоны, в свою очередь, иногда могут мимолетом оказаться на Земле.

Это происходит, когда высокоэнергетические космические лучи сталкиваются с известной нам материей. Однако более крупной частицы, состоящей из множества мезонов, физики никогда не видели.

Как объясняют авторы научной работы, если X (3872) созданы из мезонов, то перед нами признак того, что Вселенная изобиловала такими «экзотическими» частицами сразу после своего рождения. «В ближайшие годы у нас будет больше данных, и мы узнаем, какие частицы производила Вселенная в самом начале своего пути», — отмечают исследователи.

Не пропустите: Что нужно знать о новой квантовой теории времени?

Суперпозиция частиц-Х

По мнению ученых, которые не принимали участия в исследовании, частицы X(3872) могут и вовсе оказаться суперпозицией обычной пары очаровательных кварков или тетракварков, либо молекулами. К сожалению, экспериментальные неопределенности по-прежнему велики и не позволяют делать убедительные выводы сразу по нескольким причинам. Однако сам факт того, что физики смогли измерить состояние X (3872) при столкновении тяжелых ионов, является чрезвычайно важным открытием.

Явление при котором крошечные квантовые частицы находятся в двух местах одновременно, называется квантовой суперпозицией. Так как квантовая механика дисциплина сложная и мало понятная, речь в ней идет не о действиях, а состояниях. Например, когда электрон или фотон находится в суперпозиции, то делает все сразу, как бы накладываясь друг на друга будучи при этом и частицей и волной одновременно.

Теперь, определив сигнатуру X-частиц, физики могут определить ее внутреннюю структуру: протоны и нейтроны состоят из трех тесно связанных кварков, но исследователи считают, что частица X будет выглядеть совершенно иначе. По крайней мере, они знают, что новая частица содержит четыре кварка, но как они связаны сегодня неизвестно.

В будущем кварки и глюоны в плазме можно будет использовать, чтобы разбить частицу на части и посмотреть, что находится внутри.

Сейчас исследователи продолжают работу над сбором большего количества данных. «В ближайшие несколько лет мы соберем гораздо больше информации. Это расширит наше представление о типах частиц, которые в изобилии рождались в ранней Вселенной,» отмечают физики.

Этот эксперимент будет пополнен и другими данными благодаря работе космического телескопа Джеймс Уэбб. Этот новейший астрономический инструмент способен заглянуть внутрь Большого взрыва. Так или иначе, нам с вами впору готовиться к величайшим открытиям, способным объяснить сложную структуру Вселенной. Подробнее о том, как и когда Джеймс Уэбб начнет свою научную деятельность, мы рассказывали в этой статье, рекомендуем к прочтению.

Подробнее..

Что такое бозон Хиггса и почему ученые хотели его открыть

27.08.2020 00:12:52 | Автор: admin

В основе основ всегда есть что-то. Вопрос в том, как это найти.

Многие что-то где-то слышали про бозон Хиггса, а некоторые даже пробовали разобраться в вопросе того, что это такое. В итоге, объяснение данного процесса такое сложное, что понять все это не так легко. Мы просто знаем, что это важно, и все. Хотя иногда даже складывается ощущение, что ученые от нас что-то скрывают, и на самом деле аппаратура на миллиарды долларов, включая Большой адронный коллайдер, просто не нужна. Конечно, это не так, и физики сделали большое открытие (и продолжают делать новые), вот только надо понимать, даст ли это что-то нам с вами. Я имею в виду простых людей, которым интересно прочитать и удивиться, сколько денег потратили на новую лабораторию, но куда интереснее получить от этого какие-то преимущества. Давайте попробуем понять, светит ли нам мир во всем мире и будет в наших домах теплей от обнаружения бозона Хиггса. Да и вообще, что это такое.

Что такое бозон Хиггса

Прежде, чем рассказывать, чем является одно из самых важных открытий современной физики, надо дать этому определение. Желательно сделать это простым языком, а не так, чтобы его поняли только дипломированные физики. Этим и займемся.

Сделать это совсем просто — не просто. Еще в начале девяностых годов прошлого века в разных научных сообществах даже учреждались премии, которые должны были стимулировать ученых придумывать простые объяснения главной частицы всех теорий. Получалось так себе, но версии были очень разные.

Физики отчаянно хотят, чтобы бозон Хиггса был ошибкой

Например, одна из версий абстрактно сравнивала ситуацию с вечеринкой. Приводилась в пример группа людей, которая присутствует на каком-либо мероприятии, куда в какой-то момент заходит известный человек. Для наглядности можно даже сказать знаменитый. В итоге, некоторые люди в помещении начинают перемещаться в его сторону и идут за ним, так как хотят с ним пообщаться.

Во время такого следования толпа может разбиваться на небольшие группы, которые, допустим, будут обсуждать какие-то новости или сплетни. Постепенно они начнут передавать сплетню друг другу и начнут образовывать уплотнения.

Физики наконец-то увидели, на что распадается бозон Хиггса

В этом объяснении помещение является полем Хиггса, знаменитость является частицей, движущейся в поле, а группы людей будут представлять из себя возмущения этого поля. Ничего не понятно? Согласен! Но ведь это одно из самых простых объяснений. Если вы можете более просто объяснить, что такое бозон Хиггса, расскажите об этом в нашем Telegram-чате. Может у вас получится.

Где-то тут должна ходить знаменитость и тогда мы поймем, что такое бозон Хиггса. Или нет…

Существует ли бозон Хиггса

Бозон Хиггса является фундаментальной частицей Стандартной модели. До недавнего времени найти ее было невозможно. При этом существование такой частицы физики предсказывали еще в шестидесятые годы прошлого века. У них не было оборудования, которое позволяло бы доказать существование таких частиц, и им нужен был инструмент, который создали только существенно позже. Произошло это в 2008 году, когда в ЦЕРНе (Европейский совет ядерных исследований) появился Большой адронный коллайдер.

Стандартная модель является теоретической конструкцией, применяемой в физике элементарных частиц. Она описывает электромагнитное взаимодействие всех элементарных частиц (слабое и сильное). Стандартная модель не описывает некоторые стороны физики, например, темную материю. Именно поэтому ее нельзя называть теорией всего. Картинка стандартной модели полностью сложилась, когда открыли бозон Хиггса.

Почему бозон Хиггса называют частицей Бога

С 2008 год ученые подкованы поисках Частицы Бога (одно из названий бозона Хиггса). Так ее называют по предложению Леона Ледермана, который был нобелевским лауреатом и выпустил книгу с заголовком, начинающимся с этих слов. Хотя самому ученому больше по душе было название Проклятая частица, но оно как-то не прижилось.

Благодаря этому американскому ученому бозон Хиггса стали называть именно так.

Как говорится, хоть чертом лысым назови, но частицу в итоге нашли и произошло это в 2012 году. Помог в обнаружении как раз тот самый Большой адронный коллайдер. При этом после обнаружения ученые сообщили об этом, но не торопились делать поспешных выводов и выступали очень осторожно. В первые дни после эксперимента ученые говорили, что они только нашли элементарную частицу, похожую на бозон Хиггса.

Что даст обнаружение частицы Бога

Немного абсурдный пример. Какое-нибудь насекомое живет под землей и никогда не вылезает на поверхность, но догадывается, что небо синее (вот такое умное насекомое). Потом оно видит синий цвет и понимает, какое на самом деле небо, и что оно было право. Вот только изменит ли это что-то с точки зрения самого неба? Конечно, нет. Оно как было синим, так и осталось, а насекомое, как жило под землей, так и продолжило там жить.

Почему наша Вселенная такая странная и существуют ли законы физики?

Примерно так же дела обстоят и с бозоном Хиггса. Он не позволит начать нам путешествовать во времени, не поспособствует созданию вечного двигателя и не станет основной лекарства от всех болезней. По сути его обнаружение просто подтвердило предполагаемые принципы взаимодействия частиц и свело воедино все утверждения Стандартной теории. Возможно, из-за его появления вопросов в других областях физики, наоборот, станет только больше.

Визуализаций поиска бозона Хиггса очень много.

Где можно применить бозон Хиггса

На практике применение бозона Хиггса пока невозможно, да и не понятно, где его применять. Зато он важен для фундаментальной физики. Ну, хотя бы он не привел к концу света, о котором говорили многие скептики. Были даже теории о том, что столкновение частиц в Большом адронном коллайдера может породить черную дыру, которая поглотит всю нашу Солнечную систему. А Дэн Браун в своей известной книге Ангелы и демоны сделал основной сюжета охоту за антивеществом, которое злоумышленники похитили в ЦЕРН.

Бозон Хиггса: портал в темный мир?

В итоге у нас (у человечества) есть бозон Хиггса и Большой адронный коллайдер в центре Европы, стоимость строительства которого превысила 10 миллиардов долларов. Практической пользы для простых людей чуть меньше, чем нет совсем, но звучит вся эта история интересно. Ну, хоть физики довольны — может найдут применение своей находке.

Подробнее..

У Вселенной может быть пятое измерение

18.02.2021 18:07:51 | Автор: admin

Ученые почти уверены, что нашли портал в пятое измерение.

Еще в 1920-х годах прошлого века, в попытках объединить силы гравитации и электромагнетизма, Теодор Калуца и Оскар Клейн предположили о существовании дополнительного измерения за пределами привычных трех пространственных измерений и времени которые в физике объединены в 4-мерное пространство-время. Если оно существует, то такое новое измерение должно быть невероятно крошечным и незаметным для человеческого глаза. В конце 1990-х годов эта идея пережила замечательный ренессанс, когда ученые осознали, что существование пятого измерения может дать ответы на некоторые из фундаментальных вопросов физики элементарных частиц. В частности, Юваль Гроссман из Стэнфордского университета и Маттиас Нойберт, в те годы профессор Корнельского университета, в своем исследовании показали, что внедрение стандартной модели физики элементарных частиц в 5-мерное пространство-время может объяснить интригующие закономерности, наблюдаемые в массах элементарных частиц.

Чем является темная материя?

Считается, что темная материя это таинственная форма материи, недоступная прямому наблюдению, так как она не участвующая в электромагнитном взаимодействии. ТЕмная материя также составляет большую часть массы Вселенной. В начале 1930-х годов радиоастроном Ян Оорт укрепил гипотезу о существовании темной материи обнаружив, что для того, чтобы Местная группа галактик двигалась, должно существовать больше материи, чем мы наблюдаем. С тех самых пор темная материя помогает исследователям объяснить как работает гравитация, потому что многие объекты просто растворились бы или развалились без некого «х-фактора» темной материи. Так как эта таинственная субстанция не разрушает частицы, которые мы видим и «чувствуем», она должна обладать и другими особыми свойствами.

Однако в физике не мало проблем и помимо темной материи существует целых спектр вопросов, на которые нет ответа в рамках стандартной модели. «Одним из наиболее значимых примеров является так называемая проблема иерархии, вопрос, почему бозон Хиггса намного легче, чем характерная шкала гравитации. Стандартная модель не может вместить некоторые другие наблюдаемые явления. Одним из наиболее ярких примеров является существование темной материи», пишут авторы исследования, опубликованного в журнале The European Physical Journal C.

Таинственная темная материя не видима для наблюдения.

Чтобы всегда быть в курсе последних новостей из мира популярной науки и высоких технологий, подписывайтесь на наш канал в Google News!

Физики из Университета Иоганна Гутенберга в Майнце, Германия, пришли к выводу, что темная материя могла появиться в результате деятельности фермионов частиц с полуцелым значением спина. Исследование направлено на то, чтобы объяснить присутствие темной материи с помощью модели WED (models for dark matter). В ходе работы были изучены массы фермионов, которые, по мнению ученых, могут путешествовать в пятое измерение через порталы, создавая темную материю и «фермионную темную материю» в пятом измерении.

Как отметили авторы исследования в беседе с VICE, их первоначальная цель заключалась в том, чтобы «объяснить возможное происхождение масс фермионов в теориях с искаженным дополнительным измерением».

Новая частица, существование которой еще только предстоит доказать, является разновидностью фермиона или субатомной частицы. Физики считают, что эти частицы могут путешествовать через пятое измерение, связывая темную материю со всей наблюдаемой материей во Вселенной. Авторы исследования утверждают, что эта новая частица сможет взаимодействовать с бозоном Хиггса и будет иметь с ним большое сходство. Вот только ее масса будет тяжелее, так что даже с помощью коллайдера или ускорителя частиц ее нельзя обнаружить.

Вам будет интересно: Что такое бозон Хиггса и почему ученые хотели его открыть

Как найти частицу пятого измерения?

Обычная материя, как известно, состоит из фермионов. Так что если пятое измерение реально, то фермионы скорее всего в него попадают. И если эти «тяжелые» частицы существуют, то обязательно связывает видимую материю с составляющими темной материи. Изучая 5D-уравнения относительно масс фермионных частиц, физики пришли к выводу о том, что «если эта тяжелая частица существует, то она обязательно будет связывать видимую материю, которую мы знаем и которую мы подробно изучили, с составляющими темной материи, если предположить, что темная материя состоит из фундаментальных фермионов, которые находятся в дополнительном измерении».

Авторы описали частицу как возможного нового посланника в темный сектор.

Читайте также: Чего мы до сих пор не знаем о темной материи?

Интересно, что с помощью новаторской теории, обилие темной материи в космосе в астрофизических экспериментах можно будет объяснить. «После многих лет поисков возможных подтверждений наших теоретических предсказаний мы теперь уверены, что механизм, который мы обнаружили, сделает темную материю доступной для будущих экспериментов, потому что свойства нового взаимодействия между обычной материей и темной материей которое опосредуется нашей предложенной частицей могут быть точно рассчитаны в рамках нашей теории», пишет Маттиас Нойберт, глава исследовательской группы.

Более того, авторы научной работы полагают, что новая предложенная ими частица может сыграть важную роль в космологической истории Вселенной и даже может быть ответственной за создание гравитационных волн. Подробнее о том, что такое гравитационные волны и как ученым удалось их обнаружить, читайте в материале моего коллеги Артема Сутягина.

Подробнее..

Физики открыли новую элементарную частицу тетракварк

03.08.2021 22:02:34 | Автор: admin

Физики открыли новую элементарную частицу двойной тетракварк

Большой адронный коллайдер, как известно, машина невероятно сложная. Среди основных задач ускорителя заряженных частиц разгон протонов и тяжелых ионов и изучения продуктов их соударений. Так что когда говорят «эти колдуны-ученые дробят материю на атомы», все действительно так, за исключением, конечно, того, что ученые не колдуны. Новое исследование, результаты которого были представлены в ходе международной научной конференции по физике, подтвердило существование ранее неизвестной частицы, которая представляет собой тетракварк экзотический адрон, содержащий два кварка и два антикварка. Это самая долгоживущая частица экзотической материи, которую когда-либо открывали исследователи, и первая, содержащая два тяжелых кварка и два легких антикварка. И прежде чем вы окончательно запутаетесь, напомним, что кварки это фундаментальные строительные блоки, из которых строится материя. Объединяясь, эти субатомные частицы образуют адроны группу, включающую знакомые протоны и нейтроны (иными словами, кварки меньше, чем просто маленькие.) Протоны и нейтроны состоят из трех кварков, но недавно обнаруженная частица адрона состоит из четырех, что делает ее разновидностью тетракварка абсолютно новой частицы.

Интересно, что в последние годы был обнаружен ряд так называемых экзотических адронов частиц с четырьмя или пятью кварками вместо обычных двух или трех. Новое открытие касается особенно уникального и по-настоящему экзотического адрона.

Мир элементарных частиц

Элементарные частицы, хотя и невидимы человеческому глазу, составляют как и нас самих, так и все, что нас окружает. Говоря о кварках, важно понимать, что они отличаются друг от друга массой и зарядом. Новый тетракварк первый экзотический адрон, который ученые называют очаровательным. Причина заключается в том, что два его кварка присутствуют рядом с антикварками, а вот они не очаровательны совершенно.

Кварки можно рассматривать как кирпичики Lego, поэтому просто обнаружить новую комбинацию из четырех кварков, которые ранее не наблюдались не такой уж увлекательный процесс как может показаться. Что интересно изучать, так это ТО, КАК эти частицы объединяются понимая эти процессы мы наконец сможем узнать как кварки склеиваются между собой, сообщила Фрейя Блекман, физик из Университета Врие в Брюсселе, которая не принимала участия в исследовании. Я думаю, что это очень захватывающий результат.

Кварки это строительные блоки материи. Их изучение помогает нам лучше понять Вселенную и окружающий мир.

Итак, новая частица содержит два кварка и два антикварка злые близнецы кварка, если можно их так назвать. В последние годы было обнаружено несколько тетракварков (в том числе один с двумя кварками и двумя антикварками). Новое открытие физики выделяют особенно, так как частицы, содержащие кварк и антикварк, обладают по их словам «скрытым очарованием».

Еще больше увлекательных статей о последних открытиях в области физики частиц и не только читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте!

Почему тетракварк особенная частица?

Экзотические частицы, подобные новому тетракварку, могут создаваться в ускорителях, таких как Большой адронный коллайдер, но появляются и исчезают они чрезвычайно быстро. Считается, что новый тетракварк существует довольно долго, прежде чем распадется. Но «долго» в данном случае невероятно короткий период времени, за который вряд ли эту частицу можно измерить в наших, уж извините, человеческих терминах.

Продолжительно жизни нового тетракварка вероятно, немного превышает одну квинтиллионную секунды, сказал Патрик Коппенбург, физик из Голландского национального института субатомной физики и член команды LHCb в ЦЕРН.

Как и многие другие кварковые состояния, новая частица была обнаружена найден физиками с использованием метода, под названием «охота за ударами». По сути, исследователи запускают ускоритель частиц и позволяют частицам сталкиваться, следя за неожиданным количеством энергии или массы в системе. Когда они получают результаты, не синхронизированные с основным шумом системы и отфильтровав все не относящиеся к делу сигналы, у физиков появляется подсказка они наткнулись на что-то новое.

Большой адронный коллайдер в ЦЕРН позволяет ученым раскрывать самые удивительные тайны Вселенной.

Кстати, именно в следствие такой охоты в 2012 году был обнаружен бозон Хиггса. Подробнее о том, что представляет собой эта элементарная частица читайте в материале моего коллеги Артема Сутягина.

Отметим также, что результаты, полученные с помощью БАК, способствуют пониманию физиками того, как взаимодействуют фундаментальные частицы. Что же до нового тетракварка (научно записанный как Tcc+), то он распадается медленно, так как лишь немногим тяжелее частиц, на которые он распадается. Предыдущие результаты LHCb позволили физикам-теоретикам предсказать в 2017 году, что подобный тетракварк, называемый Tbb, может быть полностью стабильным, что означает, что он вообще не распадется из-за сильного взаимодействия.

Это будет прорыв в физике элементарных частиц, если будет доказано открытие нового типа тетракварка с двумя тяжелыми кварками и двумя легкими антикварками»,- отметил Руй-Линь Чжу, физик-теоретик из Нанкинского нормального университета в Китае. Новое открытие яявляется абсолютным триумфом теоретических предсказаний.

Физика элементарных частиц очень увлекательная наука.

В целом, новый эксперимент подтверждает ранее полученные исследователями выводы: «теперь мы знаем, что это частицы правят адронной вселенной», отмечают физики. Более того, открытие открывает путь для поиска более тяжелых частиц того же типа, с одним или двумя кварками. Ну а новая частица очень заманчивая цель для дальнейшего изучения.

Читайте также: Что квантовая физика может рассказать о природе реальности?

Дело в том, что частицы, на которые распадается тетракварк, сравнительно легко обнаружить, и в сочетании с небольшим количеством доступной энергии при распаде это приводит к превосходной точности определения массы тетракварка и позволяет изучать квантовые числа этой увлекательной частицы. Это, в свою очередь, может обеспечить строгую проверку существующих теоретических моделей и даже потенциально может позволить исследовать ранее недостижимые эффекты. Наука, вперед!

Подробнее..

Категории

Последние комментарии

© 2006-2024, umnikizdes.ru