Русский
Русский
English
Статистика
Реклама

Вселенная

Можно ли разгадать тайну расширения Вселенной?

21.03.2021 00:05:23 | Автор: admin

C момента своего рождения наша Вселенная расширяется со все возрастающей скоростью.

Немногим больше ста лет назад никто на нашей планете не знал, что Вселенная расширяется. Но несмотря на все беды и несчастья, которые ХХ век принес человечеству, именно это столетие ознаменовано научно-техническим прогрессом. За невероятно короткий отрезок времени мы узнали о мире и Вселенной больше, чем когда-либо. Идею о том, что наша Вселенная расширяется на протяжении последних 13,8 миллиардов лет впервые предложил бельгийский физик Жорж Леметр в 1927 году. Два года спустя американскому астроному Эдвину Хабблу удалось подтвердить эту гипотезу. Он установил, что каждая галактика удаляется от нас и чем она дальше, тем быстрее это происходит. Сегодня существует множество способов, с помощью которых ученые могут понять, как быстро наша Вселенная увеличивается в размерах. Вот только цифры, которые исследователи получают в процессе измерения, каждый раз получаются разными. Но почему?

Самая большая загадка Вселенной

Как мы знаем сегодня, существует тесная связь между расстоянием до галактики и тем, как быстро она удаляется. Так, скажем, галактика на расстоянии 1 мегапарсек от нашей планеты (один мегапарсек приблизительно равен 3,3 млн световых лет) удаляется со скоростью 70 километров в секунду. А та галактика, что находится несколько дальше, на расстоянии двух мегапарсек, движется в два раза быстрее (140 км/сек).

Интересно и то, что сегодня существует два основных подхода для определения возраста Вселенной или, по-научному, Постоянную Хаббла. Разница между этими двумя группами заключается в том, что один набор методов рассматривает относительно близкие объекты во Вселенной, а другой очень отдаленные. Однако каким бы способом не воспользовались ученые, результаты каждый раз получаются разные. Выходит, либо мы делаем что-то не так, либо где-то далеко во Вселенной происходит нечто абсолютно неведомое.

Исходя из того, что быстрее всего от Земли отдаляются самые далекие галактики, ученые сделали вывод о том, что когда-то все галактики находились в одной точке по времени это событие совпадает только с Большым взрывом.

В исследовании, недавно опубликованном на сервере препринтов airxiv.org, астрономы, изучая близлежащие галактики, использовали умный метод измерения расширения Вселенной под названием флуктуации поверхностной яркости (surface brightness fluctuations). Это причудливое название, но оно включает в себя идею, которая на самом деле интуитивно понятна.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

Представьте, что вы стоите на опушке леса, прямо перед деревом. Из-за того, что вы стоите очень близко, вы видите только одно дерево в своем поле зрения. Но стоит отойти немного назад, как вы увидите больше деревьев. И чем дальше вы будете отходить, тем больше деревьев возникнет у вас перед глазами. Примерно то же самое происходит с галактиками, которые ученые наблюдают с помощью телескопов, но гораздо сложнее.

Как узнать скорость расширения Вселенной?

Чтобы получить хорошие статистические данные, астрономы наблюдают за галактиками, расположенными довольно близко к Земле, примерно на расстоянии 300 миллионов световых лет и ближе. Однако наблюдая за галактиками, необходимо учитывать пыль, фоновые галактики и звездные скопления, которые видно на полученных с помощью телескопа изображениях.

Это интересно: Как NASA будут искать темную энергию?

Вселенная, однако, хитра. Начиная с 1990-х годов астрономы увидели, что очень далекие взрывающиеся звезды всегда были расположены дальше, чем показывали простые измерения. Это привело их к мысли, что сейчас Вселенная расширяется быстрее, чем раньше, что, в свою очередь, привело к открытию темной энергии таинственной силы, ускоряющей Вселенское расширение.

На сегодняшний день время Большого взрыва, породившего Вселенную, ученые оценивают с помощью компьютерного моделирования.

Как пишут авторы научной работы, когда мы смотрим на очень далекие объекты, мы видим их такими, какими они были в прошлом, когда Вселенная была моложе. Если скорость расширения Вселенной тогда была иной (скажем, 12-13, 8 миллиарда лет назад), чем сейчас (менее миллиарда лет назад), мы можем получить два разных значения для Постоянной Хаббла. Или, быть может, разные части Вселенной расширяются с разной скоростью?

Читайте также: Что ученым известно о возрасте и расширении Вселенной?

Но если скорость расширения изменилась, значит возраст нашей Вселенной совсем не такой, как мы думаем (ученые используют скорость расширения Вселенной, чтобы проследить ее возраст). Это, в свою очередь, означает, что у Вселенной другой размер, а значит время, необходимое для того, чтобы что-то произошло, тоже будет другим.

Если следовать этой цепочке рассуждений, то в конечном итоге окажется, что физические процессы, происходившие в ранней Вселенной, происходили в разное время. Еще, возможно, были задействованы другие процессы, влияющие на скорость расширения. В общем выходит какой-то бардак. «Из чего следует, что либо мы недостаточно хорошо понимаем, как ведет себя Вселенная, либо неправильно ее измеряем», отмечают авторы исследования.

В любом случае Постоянная Хаббла является предметом горячих споров в астрономическом сообществе. Новое исследование, однако, добавило еще больше вопросов, так что борьба с неопределенностью будет долгой. Когда-нибудь, конечно, наше понимание космоса изменится. Но когда это произойдет, космологам придется искать что-то еще, о чем можно будет спорить. Что они обязательно сделают.

Подробнее..

Как эффект Доплера помогает изучать Вселенную?

23.03.2021 22:13:45 | Автор: admin

Эффект Доплера является неотъемлемой частью современных теорий о начале Вселенной.

В 1842 году физик и математик Кристиан Доплер обнаружил, что если источник звука и наблюдатель движутся друг относительно друга, частота звука, воспринимаемого наблюдателем, не совпадает с частотой источника звука. Сегодня мы называем это явление «эффектом Доплера» и именно с его помощью астрономы ищут экзопланеты миры, которые вращаются вокруг других звезд за пределами нашей Солнечной системы. 442 из 473 известных на сегодняшний день экзопланет были обнаружены с помощью эффекта Доплера, который описывает изменения частоты любого вида звуковой или световой волны, производимой движущимся источником относительно наблюдателя. Явление, открытое австрийским ученым в 19 веке является неотъемлемой частью современных теорий о происхождении нашей Вселенной и используется при прогнозировании погоды, изучении движения звезд, а также в диагностике сердечно-сосудистых заболеваний.

Что такое эффект Доплера?

Представьте себе лужу, в центре которой сидит довольный жук. Каждый раз, когда он встряхивает лапками, он создает помехи, которые перемещаются по воде. Если эти возмущения возникают в какой-то точке, то будут распространяться из этой точки во всех направлениях. Поскольку каждое возмущение движется в одной и той же среде, все они будут двигаться во всех направлениях с одинаковой скоростью.

Узор, создаваемый лапками жука, будет представлять собой серию кругов, достигающих краев лужи с одинаковой частотой. Наблюдатель в точке А (левый край лужи) увидит возмущения, бьющиеся о край лужи с той же частотой, что и наблюдатель в точке В (правый край лужи). На самом деле частота, с которой круги достигают края лужи, будет такой же, как частота, с которой жук шевелит лапками, определим ее двумя возмущениями в секунду.

Тело и кончики ног водомерок покрыты жесткими волосками, которые помогают им скользить по воде.

Теперь предположим, что жук плывет к наблюдателю В, производя возмущения с той же частотой. Поскольку насекомое движется вправо, каждое возмущение возникает ближе к наблюдателю В и дальше от наблюдателя А и, соотвественно, достигнет наблюдателя В быстрее. При этом наблюдателю В будет казаться, что частота прихода возмущений выше, чем частота, с которой эти возмущения возникают; наблюдателю А, напротив, покажется, что частота возмущений ниже, чем на самом деле. Этот пример, надеемся, неплохо иллюстрирует эффект Доплера.

Еще больше увлекательных статей о физических открытиях, которые изменили мир, читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте!

Если нет, то отметим, что эффект Доплера можно наблюдать для любого типа волны волны воды, звуковой волны, световой волны и так далее. Представьте, что вам навстречу движется полицейская машина. Когда автомобиль приближается к вам с включенной сиреной, звук сирены становится громче, но становится тише, по мере того, как машина проезжает мимо. Это еще один пример эффекта Доплера явного сдвига частоты звуковой волны, создаваемой движущимся источником.

Как работает эффект Доплера?

Эффект Доплера представляет большой интерес для астрономов, которые используют информацию о сдвиге частоты электромагнитных волн, производимых движущимися звездами в нашей галактике и за ее пределами. На самом деле предположение исследователей о том, что наша Вселенная расширяется с ускорением, частично основано на наблюдениях электромагнитных волн, испускаемых звездами в далеких галактиках. Определить специфическую информацию о звездах внутри галактик также можно с помощью эффекта Доплера.

Современные телескопы позволяют астрономам изучать звезды в далеких галактиках. Как правило, они ищут источники света, которые испускают электромагнитные волны. Наблюдать эффект Доплера астрономы могут, когда звезда вращается вокруг собственного центра масс и движется либо по направлению к Земле либо от нее. Эти сдвиги длины волны можно увидеть в виде тонких изменений в спектре звезды радуги цветов, испускаемых светом.

Когда звезда движется к нам, ее длины волн сжимаются, и спектр приобретает голубоватый цвет. Когда звезда удаляется от нас, ее спектр светится красным.

Распространtнность планетных систем в Млечном Пути в представлении художника.

Чтобы наблюдать красное и синие свечение, астрономы используют спектрограф призмообразный прибор высокого разрешения, который разделяет входящие световые волны на различные цвета. Во внешнем слое каждой звезды есть атомы, которые поглощают свет на определенных длинах волн, и это поглощение проявляется в виде темных линий в различных цветах спектра звезды. Исследователи используют сдвиги в этих линиях как удобные маркеры для измерения величины эффекта Доплера.

Читайте также: Эффект Манделы почему люди помнят то, чего не было?

Нельзя не отметить, что эффект Доплера используют не только в астрономии. Посылая радиолокационные лучи в атмосферу и изучая изменения длин волн возвращающихся лучей, метеорологи ищут воду в атмосфере. Эффект Доплера также используется в медицине с эхокардиограммами, которые посылают ультразвуковые лучи через тело для измерения изменений в кровотоке, чтобы убедиться, что сердечный клапан работает правильно, или для диагностики сердечно-сосудистых заболеваний.

Подробнее..

Могут ли гравитационные волны разрешить кризис космологии?

14.04.2021 00:18:21 | Автор: admin

Команда ученых предложила новый способ для разрешения кризиса в космологии с помощью гравитационных волн.

ХХ век подарил миру множество удивительных открытий: в 1916 году знаменитый на весь мир физик по имени Альберт Эйнштейн опубликовал общую теорию относительности (ОТО); затем, в 1927 году астроном Эдвин Хаббл обнаружил, что галактики удаляются от Земли (и друг от друга) со все возрастающей скоростью; в последующие десятилетия такие выдающиеся умы как Нильс Бор, Макс Планк, Луи де Бройль, Вернер Гейзенберг и другие трудились над созданием квантовой теории. Сегодня их труд лежит в основе наших знаний о Вселенной мы знаем, что она родилась 13,8 миллиардов лет назад и с тех пор расширяется с ускорением. Вот только причина, по которой Вселенная становится все больше и больше, остается загадкой и ученые не могут прийти к единому мнению о том, почему. Это, во многом, связано с различными способами измерения постоянной Хаббла (фундаментального параметра, описывающего расширение Вселенной), которыепоказывают разные результаты. Но недавно ученые предложили новый способ, потенциально способный разрешить кризис космологии. О нем поговорим в этой статье.

Черные дыры и гравитационные волны

Зимой 2016 года ученые объявили об открытии гравитационных волн ряби в пространстве-времени, вызванной столкновением массивных черных дыр. Их существование впервые было предсказано теорий относительности Эйнштейна в 1916 году, а в 2017 отмечено Нобелевской премии по физике. По сути, гравитационные волны представляют бегущую деформацию абсолютной пустоты это изменения гравитационного поля, распространяющиеся подобно волнам. При прохождении гравитационной волны между двумя телами расстояние между ними изменяется.

Открытие гравитационных волн также подтверждает существование черных дыр массивных объектов, гравитационное притяжение которых настолько велико, что покинуть их не могут даже кванты самого света. Граница, что отделяет черную дыру от остального космоса, называется горизонтом событий. Его в 2019 году ученым удалось сфотографировать, подробнее об этом открытии читайте в материале моего коллеги Ильи Хеля.

Столкновение двух черных дыр причина возникновения гравитационных волн (в представлении художника).

Так как детектирование волн подтверждает смелые гипотезы о том, как устроена наша Вселенная, многие ученые назвали их открытие началом новой эры астрономии. Теперь же ученые считают, что с их помощью можно разрешить кризис современной космологии.

Интересуетесь физикой, астрономией и космосом? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить самые интересные новости из мира науки и высоких технологий!

Новый подходя измерения постоянной Хаббла

В 1929 году, спустя два года после своего открытия, Эдвин Хаббл рассчитал скорость, с которой наша Вселенная расширяется постоянную Хаббла. Вот только в последующие годы каждый новый способ ее измерения показывал новые, не согласующиеся друг с другом результаты. Интересно, что сегодня существуют два основных способа ее измерения, с той лишь разницей, что что один набор методов рассматривает относительно близкие объекты во Вселенной, а другой очень отдаленные. Но каким бы методом ученые не воспользовались, результаты получаются разные.

Несоответствие постоянной Хаббла спровоцировало кризис современной космологии и легло в основу споров между учеными: либо они делают что-то не так, либо где-то на просторах Вселенной происходит нечто неведомое.

Недавно команда исследователей из Университета Пенсильвании предложила использовать для разрешения постоянной Хаббла гравитационные волны. Дело в том, что когда массивные объекты, например черные дыры или нейтронные звезды (которые не видно с помощью оптических телескопов), сталкиваются друг с другом, они деформируют ткань пространства-времени, создавая гравитационные волны.

С 2015 года американская лазерная интерферометрическая гравитационно-волновая обсерватория (LIGO) и ее европейский аналог Virgo прослушивают космос на предмет подобных «аварий», которые звенят в их детекторах, словно колокольчики.

«Гравитационные волны могут дать вам другое представление о постоянной Хаббла», сказал в интервью Live Science Ссохраб Борханян, физик из Университета Пенсильвании.

В зависимости от расстояния от Земли столкновения черных дыр будут звучать громче или тише для LIGO, что позволит ученым вычислить, как далеко находятся эти объекты. В некоторых случаях столкновение космических монстров также приводит к вспышке света, которую астрономы могут уловить с помощью телескопов.

До сих пор исследователи наблюдали только одно такое событие с гравитационными волнами и одно со световыми сигналами пару нейтронных звезд, которые астрономы наблюдали в 2017 году. Исходя из полученных данных, физики вычислили значение постоянной Хаббла. Предыдущие исследования показали, что космологам нужно было бы наблюдать около 50 подобных событий, чтобы получить более точный расчет постоянной Хаббла.

Читайте также: Физики переосмысли строение Вселенной. Темная энергия больше не нужна?

Но эти космические аварии происходят не так часто и к тому же не связаны со вспышками света, которые содержат важнейшую информацию о скорости. Эти события, невидимые за исключением гравитационных волн, являются наиболее распространенными сигналами, получаемыми LIGO и другими гравитационно-волновыми установками.

Выход из кризиса

В течение следующих пяти лет детекторы LIGO, как ожидается, получат обновления, которые позволят им распаковать гораздо больше деталей сигналов гравитационных волн и уловить гораздо больше событий, включая больше столкновений черных дыр. К американским и европейским установкам недавно присоединился детектор гравитационных волн Kamioka (KAGRA) в Японии, а индийский детектор должен появиться в сети примерно в 2024 году.

Рябь в пространстве-времени, вызванная столкновением массивных объектов.

По мнению авторов нового исследования, опубликованного в журнале Bulletin of the American Physical Society, в будущем детекторы смогут определять где в космосе произошло столкновение в 400 раз лучше, чем сегодня. С помощью этой информации астрономы надеются идентифицировать точное местоположение галактики, где произошло столкновение, а затем определить, насколько быстро эта галактика удаляется от Земли. Также не будет необходимости искать соответствующую вспышку света.

Еще больше по теме: Можно ли разгадать тайну расширения Вселенной?

В своей работе ученые показали, что столкновения между массивными объектами будут особенно насыщены информацией, производя данные, с помощью которых можно вычислить постоянную Хаббла с высокой точностью. Полученные результаты также предполагают, что в будущем гравитационные детекторы будут лучше и точнее улавливать поступающие сигналы. И все же, возможность того, что другие измерения помогут разрешить кризис постоянной Хаббла раньше, исключать не стоит.

Подробнее..

Симуляция или реальность? Физики полагают, что Вселенная способна к самообучению

20.04.2021 16:06:18 | Автор: admin

Результаты нового исследования показывают, что Вселенная обучается законам физики по мере своего развития.

Мир удивительных научных открытий нельзя представить без смелых, новаторских и зачастую противоречивых идей. Особенно это касается космологии, которая изучает Вселенную как единое целое, в том числе ее рождение, дальнейшую судьбу и возможную гибель. Стоит ли удивляться, что за время своего существования космология претерпела множество трансформаций. Сегодня астрономы понимают, что Вселенная стремительно расширяется бесконечно ускоряясь и постепенно становясь все холоднее. Если этот процесс продолжится, в конечном итоге вся Вселенная погрузится во тьму и холод. Но наука не была бы так увлекательна, если бы не новые открытия, позволяющие взглянуть на привычный ход вещей иначе. Недавно команда физиков-теоретиков в сотрудничестве со специалистами из Microsoft опубликовала исследование, в котором рассматривает нашу Вселенную как самообучающуюся систему эволюционных законов, которые, по сути, являются алгоритмами работающими в форме операций обучения. Иными словами, исследователи предположили, что мы живем внутри компьютерной системы, который постоянно учится. Полученные результаты, как полагают авторы, можно будет использовать для создания совершенно новой области космологических исследований.

Наша Вселенная симуляция?

В 2003 году в свет вышла статья шведского философа Ника Бострома под названием Доказательство симуляции. В ней профессор Оксфордского университета предполагает, что наша реальность представляет собой иллюзию, воссозданную компьютерной программой. В статье в качестве доказательства своего тезиса Бостром рассматривает современное направление развитие технологий, искусственного интеллекта и многих других отраслей, при условии, что они «не будут противоречить существующим законам физики и инженерии».

Как полагает Бостром, человечество в конечном итоге придет к такому развитию технологий, что в нашем расположении окажутся огромные вычислительные мощности, с помощью которых можно будет симулировать работу многих разумных существ. Однако каким именно путем будет проведена симуляция Бостром не поясняет, так как реализовать ее можно как с помощью компьютеров, так и с помощью стимуляции центров мозга, ответственных за поведение во время сна и формирование реальности во сне.

Читайте также: Симуляция или нет? Почему некоторые ученые полагают, что наш мир нереален?

Кадр из мультсериала «Рик и Морти», серия про микровселенную.

Среди сторонников теории Бострома космолог Алан Гут из Массачусетского технологического института. Он предполагает, что наша Вселенная это лабораторный эксперимент (как в серии «Рик и Морти», когда Рик создал «карманную» вселенную для выработки электроэнергии). По Гуту наша Вселенная создана неким сверхразумом и находится в отдельном пространственно-временном пузыре (он быстро отделился от материнской вселенной и потерял с ней контакт).

Но не все в подобных предположениях так просто, как может показаться на первый взгляд ведь доказать, что мы находимся в реальной Вселенной практически невозможно, так как любое «доказательство» может являться частью программы.

Еще больше увлекательных статей о последних открытиях в области космологии и астрофизики читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте!

Вселенная, которая учится

Совместная работа команды физиков-теоретиков и исследователей из Microsoft, опубликована на сервере препринтов airxiv.org (здесь ученые делятся статьями, которые еще не прошли экспертную оценку и не были опубликованы в научном журнале) и описывает нашу Вселенную как самообучающуюся систему эволюционных законов. Получившая название «Автодидактическая Вселенная» статья занимает 80 страниц и излагает довольно хороший поверхностный аргумент в пользу новой, нюансированной теории всего. В исследование утверждается, что законы, управляющие Вселенной, являются эволюционной системой обучения.

Но как это работает? Физики предлагают посмотреть на Вселенную как на систему обучения, используя системы машинного обучения. Точно так же, как мы можем научить машины выполнять разворачивающиеся во времени функции, то есть учиться, законы Вселенной, по сути, являются алгоритмами, которые работают в форме операций обучения.

С самого момента своего рождения наша Вселенная расширяется с ускорением, становясь при этом все холоднее и холоднее.

Это интересно: Существует 50% вероятность того, что мы живем в симуляции

Так как мы понимаем законы физики исходя из наблюдений, вполне логично, что первоначальный физический закон был бы невероятно простым, самоподдерживающимся и способным к обучению и развитию. Возможно, Вселенная началась не с Большого взрыва, а с простого взаимодействия между частицами. Исследователи ссылаются на это скромное предположение, утверждая, что «информационные архитектуры обычно усиливают причинные силы довольно небольших коллекций частиц». Иными словами, ученые описывают постоянно развивающиеся законы Вселенной как необратимые.

Одно из следствий заключается в том, что если эволюция законов реальна, то она, вероятно, будет однонаправленной, поскольку в противном случае законы обычно возвращаются к предыдущим состояниям, возможно. Это происходит потому, что новое состояние не является случайным, а скорее должно соответствовать определенным ограничениям, в то время как непосредственно прошлое состояние уже удовлетворяло ограничениям.

«Обратимая, но развивающаяся система будет часто случайным образом исследовать свое непосредственное прошлое. Когда мы видим эволюционирующую систему, которая показывает периоды стабильности, она, вероятно, развивается в одном направлении», пишут авторы научной работы.

Вселенная родилась в результате Большого взрыва и с тех пор расширяется все быстрее и быстрее.

Иллюстрируя эти моменты, исследователи ссылаются на образ эксперта-криминалиста, пытающегося воссоздать, как данная программа пришла к полученным результатам. Это означает, что результаты программы обратимы, так как существует история их выполнения. Но если бы тот же эксперт попытался определить результаты программы, изучив центральный процессор (объект, наиболее ответственный за ее выполнение), это было бы гораздо сложнее сделать, так как никакой преднамеренной внутренней записи операций, выполняемых процессором, нет.

Вам будет интересно: Может ли Вселенная осознанно имитировать собственное существование?

Выходит, если Вселенная действует с помощью набора законов, которые, будучи изначально простыми, являются самообучающимися и, следовательно, способны эволюционировать с течением времени, для нас это может означать, что создание единой теории всего невозможно. Но если законы могут развиваться, то могут и больше: авторы исследования считают, что только Вселенная, которая изучает свои законы, может породить новые явления, такие как жизнь и физику.

Важно отметить, что новое исследование пока не опубликовано, а значит к его результатам необходимо отнестись с осторожностью. Исследователи, тем не менее, проделывают большую работу, описывая типы алгоритмов и нейросетевых систем, которые могла бы генерировать такая Вселенная и из которых она сама состоит. В конечном счете команда описывает эту работу как «первые неуверенные шаги» к более полной и всеобъемлющей теории. Так что будем ждать.

Подробнее..

Узнаем ли мы когда-нибудь как появилась Вселенная?

22.04.2021 22:11:17 | Автор: admin

Наши знания о Вселенной увы, недостаточны, чтобы понять, что происходило в первые доли секунды после ее рождения.

Считается, что наша Вселенная родилась 13,8 миллиардов лет назад после Большого взрыва и с тех пор расширяется с ускорением. Однако что именно происходило в первые секунды после рождения Вселенной инфляции долгое время остается для физиков загадкой. Согласно новой гипотезе, о чем рассказывает Live Science, в относительно молодой Вселенной «наблюдатель должен быть огражден» от непосредственного наблюдения мельчайших структур в космосе. Другими словами, физики по определению никогда не смогут построить модель инфляции с помощью обычных инструментов, и им придется придумать лучший способ. Новая гипотеза указывает на определенную особенность инфляционных моделей, которые принимают очень, очень малые флуктуации в пространстве-времени и делают их больше. Но так как полной физической теории этих малых флуктуаций не существует, модели инфляции с этой особенностью (то есть практически все), никогда не будут работать. Напомню, что наблюдения за крупномасштабной структурой Вселенной и остатками света от Большого взрыва ранее показали, что в очень ранней Вселенной наш космос, вероятно, переживал период невероятно быстрого расширения.

Эволюция ранней Вселенной

Сегодня мы знаем, что в результате инфляции за мельчайшую долю секунды Вселенная стала в триллионы и триллионы раз больше. В процессе этого роста инфляция также сделала наш космос немного неровным: по мере ее развития мельчайшие случайные квантовые флуктуации флуктуации, встроенные в саму ткань пространства-времени становились намного, намного больше, что означало, что некоторые области были более плотно упакованы материей, чем другие.

В конце концов, эти субмикроскопические различия стали макроскопическими … и даже больше, в некоторых случаях простираясь от одного конца Вселенной до другого. Миллионы и миллиарды лет спустя эти крошечные различия в плотности выросли, чтобы стать семенами звезд, галактик и самых больших структур в космосе. Но если инфляция ранней Вселенной сделала нашу Вселенной такой, какой мы знаем ее сегодня, то что именно привело инфляцию в действие? Как долго она продолжалась и что остановило ее? Ответов на эти вопросы у ученых, увы, нет им попросту не хватает полного физического описания этого знаменательного события.

Инфляционная модель Вселенной выглядит так.

Еще одна загадка заключается в том, что в большинстве моделей инфляции флуктуации в чрезвычайно малых масштабах раздуваются, превращаясь в макроскопические различия. Эти различия невероятно крошечные и чтобы описать с их помощью реальность, потребуется новая теория физики. Такая, кстати, уже маячит на горизонте, о чем подробнее я рассказывала в этой статье.

Разные подходы к пониманию инфляции

Поскольку у ученых нет теории, которая объединяла бы физику при высоких энергиях и малых масштабах (например, при таких условиях, как инфляция), физики пытаются построить версии с более низкими энергиями, чтобы добиться прогресса. «В рамках новой гипотезы, однако, такая стратегия не работает, потому что когда мы используем ее для построения моделей инфляции, процесс инфляции происходит так быстро, что «подвергает» субпланковский режим макроскопическому наблюдению», пишут авторы нового исследования.

Еще один возможный подход к моделированию ранней Вселенной кроется в теории струн, которая сама по себе является обнадеживающим кандидатом на создание единой теории всего (объединяя классическую и квантовую физику). Интересно, что в этой модели Вселенная не подвергается периоду быстрой инфляции. Вместо этого период инфляции проходит гораздо мягче и медленнее, а флуктуации не «подвергаются» воздействию макроскопической Вселенной. Однако так называемые «струнные газовые модели» (от англ. «effective field theory») пока не обладают достаточной детализацией, чтобы их можно было проверить на основе наблюдаемых свидетельств инфляции во Вселенной.

Наблюдаемая Вселенная скрывает в себе множество тайн.

Читайте также: Действительно ли мир стоит на пороге открытия новой физики?

Напомню, что теория струн предсказывает огромное количество потенциальных вселенных, из которых наш конкретный космос (с его набором сил и частиц и остальной физикой) представляет только одну. И все же большинство моделей инфляции (если не все) несовместимы с теорией струн на базовом уровне. Вместо этого они принадлежат к тому, что физики называют «болотом» области возможных вселенных, которые просто физически не могут существовать.

Сегодня ученые не теряют надежд построить традиционную модель инфляции, но если новая гипотеза верна, это сильно ограничит типы моделей, которые физики могут построить. Также важно понимать, что новая гипотеза пока что является не более чем предположением. Которое, правда, согласуется с недоказанной теорией струн (на самом деле теория струн далека от завершения и пока что не способна делать предсказания).

Теория струн призвана объединить все наши знания о Вселеной и объяснить ее.

Вам будет интересно: Обнаружено новое доказательство теории струн

Но подобные идеи, все же полезны, потому что физики принципиально не понимают процесс инфляции. Так что все, что может помочь исследователям отточить навыки мышления, в том числе нестандартного, приветствуется. А как вы думаете, сумеют ли физики в ближайшие годы понять как родилась Вселенная? Ответ будем ждать здесь, а также в комментариях в этой статье.

Подробнее..

Обнаружены свидетельства коллективного поведения галактик

30.04.2021 20:07:32 | Автор: admin

Млечный Путь, галактика, в которой мы живем, является одной из сотен миллиардов галактик, разбросанных по всей Вселенной. Их разнообразие ошеломляет: спиральные, кольцевые галактики в форме усыпанных звездами петель и древние галактики, которые затмевают практически все остальное во Вселенной.

Обозримая Вселенная с миллиардами населяющих ее галактик и скоплений, расположенных на чудовищных расстояниях друг от друга, напоминает нервную ткань, в которой клетки связаны в систему отходящими от них нейронами, по которым передаются нервные импульсы. Эту космическую систему более высокого уровня ученые называют Метагалактикой. В ней находятся многочисленные скопления галактик, свет от которых улавливают наши телескопы. Интересно, что наблюдая за этими удивительными обитателями Вселенной, астрономы и астрофизики были несколько озадачены их синхронизированным поведением, которое нельзя объяснить индивидуальными гравитационными полями. Так, в работе 2018 года сообщалось о сотнях галактик, вращающихся синхронно с другими галактиками, которые расположены в десятках миллионов световых лет от них. Выходит, несмотря на различия и умопомрачительные расстояния, некоторые галактики движутся вместе по странным и часто необъяснимым закономерностям, как будто связаны между собой огромной невидимой силой. Эти открытия намекают на загадочное влияние так называемых «крупномасштабных структур», которые, как следует из названия, являются самыми большими известными объектами во Вселенной.

Крупномасштабные структуры Вселенной

На сегодняшний день ученые обнаружили большое количество свидетельств того, что Вселенная связана гигантскими структурами. Оказалось, галактики могут перемещаться друг с другом на огромные расстояния вопреки предсказаниям основных космологических моделей. Так, галактики в пределах нескольких миллионов световых лет друг от друга могут гравитационно влиять друг на друга предсказуемым образом, но ученые наблюдали таинственные закономерности между отдаленными галактиками, которые выходят за рамки этих локальных взаимодействий и бросают вызов фундаментальным представлениям о Вселенной.

Последние открытия в этой области, например работа 2018 года, опубликованная в журнале The Astrophysical Journal, намекает на то, что так называемые «крупномасштабные структуры» состоят из газообразного водорода и темной материи и имеют форму нитей, листов и узлов, которые связывают галактики в обширную сеть образуют космическую паутину, которая имеет большое значение для эволюции и движения галактик.

Читайте также: Что такое космическая паутина?

Миллиарды галактик, похоже, обладают подобием «коллективного поведения».

В ходе исследования было изучено 445 галактик в радиусе 400 миллионов световых лет от Земли. Астрономы заметили, что многие галактики, которые вращаются по направлению к Земле, имеют соседей и те тоже движутся к Земле. В то же самое время галактики, которые вращаются в противоположном направлении, имеют соседей, удаляющихся от Земли.

«Наблюдаемая когерентность должна иметь какую-то связь с крупномасштабными структурами, потому что невозможно, чтобы галактики, разделенные 20 миллионами световых лет напрямую взаимодействовали друг с другом», пишут авторы научной работы.

Авторы исследования предполагают, что синхронизированные галактики могут быть встроены в одну и ту же крупномасштабную структуру, которая очень медленно вращается против часовой стрелки. Эта лежащая в основе динамика может вызвать некоторую согласованность между вращением изученных галактик и движениями их соседей, хотя потребуется гораздо больше исследований, чтобы подтвердить полученные в ходе работы выводы.

Хотите всегда быть в курсе последних новостей из мира популярной науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

Космологическая модель под угрозой?

В 2018 году в свет вышла еще одна работа за авторством астрономов из Страсбургского университета, согласно которой что-то не так со стандартными космологическими моделями. В работе речь идет о расширенных наблюдениях Центавра А линзовидной галактики с полярным кольцом, которая находится в созвездии Центавр захваченных специализированным инструментом MUSE на Очень Большом телескопе в Чили.

Наблюдения показали, что в Центавре А есть когерентное движение и совместно вращающаяся плоскость спутников. Это означает, что присутствует несоответствие, которое авторы работы, опубликованной в журнале Science, считают «одним из самых серьезных маломасштабных вызовов» стандартной космологической модели. Эта странная когерентность, также называемая проблемой плоскости спутников, может наблюдаться как в нашей собственной галактике, так и в галактике Андромеды.

Считается, что орбиты галактик-спутников управляются нитями космической паутины, что может помочь объяснить некоторые загадочные явления, наблюдаемые в близлежащих галактических системах.

Стандартная космологическая модель предсказывает, что галактики формируются иерархически, то есть постепенно увеличиваются, притягивая меньшие галактики и разрывая некоторые из них на части. Это происходит, когда сила тяжести всасывает их, независимо от того, с какого направления они захвачены. Поэтому можно было бы ожидать, что эти галактики будут двигаться во всевозможных случайных положениях и направлениях, соответствующих тому, как они двигались до того, как их поймали на орбите.

Необходимо отметить, что стандартная космологическая модель чрезвычайно хорошо подтверждена, поэтому любые доказательства, которые бросают ей вызов, неизбежно вызывают споры в научных кругах. Но несмотря на разные точки зрения и возможные объяснения наблюдаемой когерентности, ученые продолжают работу чтобы выяснить, действительно ли галактики демонстрируют признаки «коллективного поведения» и почему. Так что будем ждать!

Подробнее..

Что представляют собой гигантские космические структуры?

16.05.2021 22:16:19 | Автор: admin

Наша Галактика быстро движется к массивной области космического пространства Великому аттрактору.

Хотя это может казаться неочевидным, галактики не просто случайным образом распределены во Вселенной. Вместо этого они сгруппированы в большие нити, разделенные гигантскими пустотами пространства. Каждая нить в основном представляет собой стену галактик, простирающуюся на сотни миллионов световых лет. Интересно, что одну из самых больших структур в известной Вселенной астрономы обнаружили совсем недавно, а ведь это гигантская стена галактик длиной около 1,4 миллиарда световых лет! Учитывая, насколько близко к нам находится это массивное сооружение, удивительно, что ученые не замечали его раньше. В течение последних десяти лет международная группа астрономов во главе с Брентом Талли из Института астрономии Гавайского университета занималась составлением карт распределения галактик вокруг Млечного Пути. Астрономы назвали эту недавно определенную структуру «Стеной Южного полюса», которая находится за пределами Ланиакеи огромного сверхскопления галактик, включая нашу собственную.

Вселенная в больших масштабах

В самых больших масштабах Вселенная выглядит как огромная космическая паутина. Звезды соединяются в галактики, которые группируются в галактические группы. Многие группы, связанные вместе, приводят к скоплениям галактик, и иногда кластеры сливаются вместе, создавая еще более крупные кластеры. Многие скопления вместе, охватывающие сотни миллионов или даже миллиарды световых лет в поперечнике, по-видимому, образуют самые большие структуры из всех: сверхскопления.

Наше собственное сверхскопление Ланиакея состоит примерно из 100 000 галактик, более чем в 10 раз богаче, чем самые крупные известные скопления. Однако эти сверхскопления только кажутся структурами. По мере старения Вселенной отдельные компоненты сверхскоплений раздвигаются, показывая, что они все-таки не являются истинными структурами.

Ланиакея и соседнее сверхскопление галактик Персея-Рыб. Изображение: nature.com

Горячее море материи и излучения, будучи плотным и расширяющимся, со временем остывает. В результате, в течение достаточно долгого времени будут формироваться атомные ядра, нейтральные атомы и, в конечном итоге, звезды, галактики и их скопления. Непреодолимая сила гравитации делает это неизбежным, благодаря ее воздействию как на обычную (атомную) материю, которую мы знаем, так и на темную материю, заполняющую нашу Вселенную, природа которой до сих пор неизвестна.

Еще больше увлекательных статей о последних открытиях в области астрономии и астрофизики, читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте!

За пределами Млечного Пути

Когда мы смотрим во Вселенную за пределы нашей галактики, эта картина имеет огромное значение. По крайней мере, так кажется на первый взгляд. В то время как многие галактики существуют изолированно или сгруппированы в коллекции только из нескольких, во Вселенной также существуют огромные гравитационные «колодцы», которые притягивают сотни или даже тысячи галактик, создавая огромные скопления.

Довольно часто в центре находятся сверхмассивные эллиптические галактики, причем самая массивная из обнаруженных на сегодня показана ниже: это IC 1101, она более чем в тысячу раз массивнее нашего собственного Млечного Пути.

Самая массивная галактика из известных IC 1101 выглядит так.

Это интересно: Что такое космическая паутина?

Так что же больше скопления галактик? Сверхскопления это скопления скоплений, соединенных большими космическими нитями темной и нормальной материи, гравитация которых взаимно притягивает их к их общему центру масс. Вы не были бы одиноки, если бы думали, что это всего лишь вопрос времени то есть времени и гравитации когда все скопления, составляющие сверхскопление, сольются вместе. Когда это произойдет, мы, в конечном итоге, сможем наблюдать единую связанную космическую структуру беспрецедентной массы.

Местная группа галактик

В нашем собственном районе местная группа, состоящая из Андромеды, Млечного Пути, Треугольника и, возможно, 50 меньших карликовых галактик, находится на окраине сверхскопления Ланиакея. Наше местоположение помещает нас примерно в 50 000 000 световых лет от основного источника массы: массивного скопления Девы, которое содержит более тысячи галактик размером с Млечный Путь. По пути можно найти много других галактик, групп галактик и небольших скоплений.

В еще больших масштабах скопление Девы является лишь одним из многих в той части Вселенной, которую мы нанесли на карту, наряду с двумя ближайшими: скоплением Центавра и скоплением Персея-Рыб. Там, где галактики наиболее сконцентрированы, представляют собой самые большие скопления массы; там, где линии соединяют их вдоль нитей, мы находим «нити» галактик, похожие на жемчужины, слишком тонкие на ожерелье; и в больших пузырьках между нитями мы находим огромную недостаточную плотность материи, поскольку эти области отдали свою массу более плотным.

Читайте также: В космической паутине обнаружены миллиарды карликовых галактик

Млечный Путь окружают другие, более мелкие галактики.

Если мы посмотрим на наше собственное окружение, то обнаружим, что существует большая коллекция из более чем 3000 галактик, которая составляет крупномасштабную структуру, включающую нас, Деву, Льва и многие другие окружающие группы. Плотное скопление Девы самая большая его часть, составляющая чуть более трети общей массы, но в нем есть много других концентраций массы, включая нашу собственную локальную группу, соединенных вместе невидимой силой гравитации и невидимыми нитями темной материи.

Великая тайна

Здорово, правда? Вот только на самом деле эти структуры не настоящие. Они не связаны друг с другом и никогда не станут таковыми. Однако сама идея существования сверхскоплений и название для нашего Ланиакея будут сохраняться в течение длительного времени. Вот только назвав объект, реальным его не сделаешь: через миллиарды лет все различные компоненты будут просто разбросаны все дальше и дальше друг от друга, и в самом отдаленном будущем нашего воображения они исчезнут из поля зрения. Все это из-за того простого факта, что сверхскопления, несмотря на их названия, вовсе не являются структурами, а просто временными конфигурациями, которым суждено быть разорванными расширением Вселенной.

Подробнее..

Существуют ли доказательства того, что мы живем в Мультивселенной?

30.12.2020 16:10:03 | Автор: admin

Если параллельные реальности существуют, то как сильно отличаются от нашей?

Как думаете, существует ли параллельная вселенная? Или их много? Несмотря на то, что разговоры о параллельных мирах излюбленная тема научных фантастов, теоретическая физика допускает их существование. Так, выдающийся физик-теоретик, легенда космологии Стивен Хокинг считал, что попасть в иную реальность можно сквозь черную дыру. Еще один известный ученый Митио Каку предлагает несколько иной взгляд на Мультивселенную — с точки зрения квантовой механики, согласно законам которой одна и та же частица может существовать в двух местах одновременно. Более того, Каку отмечает, что все больше ученых сегодня не верят в существование одной-единственной Вселенной, считая подобную точку зрения лишь одной из многих теорий, способных объяснить устройство нашего мира. Но есть ли хоть малейшие доказательства существования множества миров или наоборот, их отсутствия? Давайте разбираться.

Другой мир

Хочу сразу предупредить читателя — все разговоры о параллельных мирах так или иначе упираются в законы, описывающие как элементарные частицы (протоны, фотоны, электроны, кварки и пр.) взаимодействуют между собой. А все что касается квантовой физики, и я не преувеличиваю, очень и очень сложно. Причем иногда до такой степени, что сами ученые открыто признаются в том, что не понимают ее. Но если умнейшие представители рода человеческого не могут с уверенностью сказать как устроена Вселенная на атомном уровне, что же говорить обо всех остальных, обычных жителях планеты? Можно ли вообще разобраться в том, сколько существует альтернативных реальностей?

Начнем с того, что современная наука пока не может ни доказать, ни опровергнуть существование Мультивселенной. А это означает, что тонкую грань между наукой и научной фантастикой бывает сложно заметить, но мы с вами не будем выходить за пределы физических теорий.

Кто знает, может быть прямо сейчас вы из параллельной вселенной тоже читаете эту статью.

Итак, в интервью Russia Today доктор Митио Каку утверждает, что теоретическая физика всерьез рассматривает вероятность того, что наша Вселенная может сосуществовать с другими мирами. Так, если Мультивселенная реальна, она может объяснить многие законы природы. Более того, существование параллельных вселенных могло бы объяснить появление жизни на нашей планете — только вспомните череду случайных событий, позволивших нашим далеким предкам выйти из воды на сушу. Со стороны может даже показаться, что Вселенная существует для того лишь, чтобы на свет появились мы с вами. Но означает ли это, что где-то в космосе есть Бог? Не обязательно. Каку отмечает, что сам факт нашего существования может указывать на то, что в других вселенных у нашей планеты не было бы Луны, а энергии Солнца могло оказаться недостаточно для поддержания на Земле температуры для возникновения жизни.

Еще больше новостей из мира популярной науки и высоких технологий читайте на нашем канале в Google News.

Где доказательства?

Прошлой весной репортаж с крупнейшего в мире нейтринного телескопа раскинувшейся сетки детекторов, вплетенных в антарктический лед, совпал со вспышкой гиперболических заголовков в мировых СМИ. Утверждалось, что ученые наконец обнаружили доказательства существования параллельного мира. Правда, очень необычного — исследователи утверждали, что время в этом мире идет в обратную сторону, а Большой взрыв представляет собой конец, а не начало. Хотя начинать поиски своего стареющего двойника пока слишком рано, физики предположили существование такой Вселенной не просто так. Дело в том, что они поймали странные сигналы из космоса, которые не поддаются простому объяснению.

Шесть лет назад в ходе эксперимента в Антарктике, исследователи обнаружили странные частицы, которые могут свидетельствовать о существовании параллельной реальности. Устройство, называемое антарктической импульсной переходной антенной (ANITA), улавливает радиосигналы, возникающие при столкновении высокоэнергетических частиц из глубокого космоса с нашей атмосферой. Некоторые волны скользят по земле, прежде чем их зафиксирует ANITA, а другие отскакивают ото льда.

Гигантский воздушный шар, который нес на себе набор антенн ANITA над Антарктидой.

В основе этой тайны лежат нейтрино: призрачные, высокоэнергетические частицы, которые могут проходить сквозь почти любой материал невредимыми, но могут производить предательские радиоимпульсы, которые улавливает ANITA. Чтобы продолжить изучение необычных сигналов, физики обратились к IceCube — нейтринному телескопу, состоящему из длинных цепочек детекторов, расположенных вблизи южного полюса. Нейтрино, проходя сквозь лед, может производить другие частицы, которые испускают крошечные вспышки света, которые могут обнаружить датчики IceCube.

Читайте также: Если существуют другие вселенные, то сталкиваются ли они с нашей?

Новые данные, опубликованные в марте в журнале The Astrophysical Journal, означают, что ученым придется продолжать искать менее очевидные объяснения. Некоторые предположили, что аномалии возникли из-за радиоволн, отражающихся от пещер или погребенных во льду озер. Другие теоретики предлагали более экзотические идеи, например о том, что тяжелые, высокоэнергетические частицы в соответствии с данными ANITA могут описывать одного кандидата на темную материю-таинственное вещество, которое, как полагают исследователи, составляет 85% всей материи во Вселенной. И, наконец, третьи выдвинули гипотезу, согласно которой экзотические частицы соответствуют существующей теоретической модели параллельной вселенной симметричной нашей, но населенной антиматерией и движущейся в обратном направлении.

Согласитесь, все три предположения как минимум интригуют и буквально заставляют нас представить то, какой Вселенная может быть на самом деле. Так или иначе, на сегодняшний день нет 100% доказательств того, что частицы, которые уловила ANITA, действительно исходят из параллельного мира, в котором вообще все наоборот. Исследователи, работающие над проектом отмечают, что впереди еще очень много работы и перепроверки данных, так что остается только ждать результатов будущих открытий. Ну а мы, в свою очередь, поможем вам скорость время — так, летом я рассказывала об удивительном взгляде на Вселенную Нобелевского лауреата Сэра Роджера Пенроуза, рекомендую к прочтению.

Подробнее..

Главные научные открытия 2020 года по версии Hi-News.ru

01.01.2021 00:09:12 | Автор: admin

Пока, 2020!

2020 год оказался полон удивительных открытий. Самым большим достижением современной науки в 2020 году, безусловно, является рекордно быстрая разработка эффективных вакцин против COVID-19. Это самый настоящий подвиг исследователей всего мира, который должен быть отмечен наградами в ближайшее время. Но уходящий год запомнится нам не только пандемией коронавируса: в самых разных областях науки были сделаны поражающие воображения научные открытия. Некоторые из них просто невозможно не заметить самые детальные снимки Солнца, запуск космического корабля Crew Dragon и его стыковка с Международной космической станцией (МКС), чипирование свиней в рамках проекта Илона Маска Neurolink и обнарудение воды на Луне вот лишь несколько наиболее запоминающихся открытий 2020 года. Редакция Hi-News.ru поздравляет читателей с Новым Годом и предлагает вспомнить самые важные и наиболее интересные открытия самого жаркого (во всех смыслах этого слова) года в новейшей истории. Поехали!

Самые детальные фотографии Солнца


Так выглядит солнечное пятно в объективе телескопа находится на расстоянии 149,6 миллионов километров от нашей планеты. Размер самого пятна оценивается исследователями в 16 тысяч километров, наиболее мелкие структуры на изображении имеют размеры до 20 километров.

Солнечные пятна это темные области на Солнце, которые помогают ученым отслеживать активность на поверхности звезды. На фото перед вами самое четкое на сегодняшний день изображение солнечного пятна, полученное с помощью оптического телескопа DKIST (Daniel K. Inouye Solar Telescope), расположенного на Гавайях и оснащенного 4,24-метровым главным зеркалом и системой адаптивной оптики. Само пятно кажется темным из-за того, что плазма в нем более холодная, чем в окружающих пятно областях. Напомним, что солнечные пятна часто являются предвестниками солнечных вспышек интенсивных выбросов энергии с поверхности Солнца.

Интересно, что фотография пятна под названием AR 2757, была сделана 28 января 2020 года, на этапе ввода телескопа в эксплуатацию. На сегодняшний день DKIST является самым крупным и совершенным наземным солнечным телескопом.

Читайте также: Получены самые детальные фотографии поверхности Солнца

Фосфин в облаках Венеры

В атмосфере Венеры обнаружены следы фосфина соединения фосфора, которое в условиях Земли вырабатывается только микроорганизмами или синтезируется в лабораторных условиях.

Поиски инопланетной жизни в 2020 году приобрели практически революционный характер. Так, одним из ярчайших событий года стало обнаружение в атмосфере Венеры следов фосфина газа, вырабатываемого анаэробными микробами на Земле. Фосфин в ядовитых облаках «адской» планеты мог появиться в результате вулканической активности или ударов молнии но не в таком количестве. Три другие исследовательские группы, однако, не смогли подтвердить полученные ранее выводы, хотя две из трех команд использовали одни и те же данные.

Астрономы, стоявшие за открытием, впоследствии повторно проанализировали свои данные и обнаружили ошибку. Согласно заново обработанным данным, сигнал фосфина по-прежнему улавливался, но намного слабее. Примечательно, что даже малое количество фосфина в венерианских облаках нельзя объяснить только вулконической активностью и молниями. Не исключено, что таинственные химические реакции в атмосфере Венеры превращают фосфористые соединения из извержений и гроз в фосфин. И есть еще шанс, что фосфин появился в результате активности чужеродных бактерий. Подробнее об этом удивительном открытии читайте в материале Рамиса Ганиева.

Вакцины против коронавируса

Будем надеяться, что пандемия COVID-19 закончится в ближайшем будущем.

До пандемии COVID-19 самая быстрая разработка вакцины в истории (против эпидемического паротита) заняла более четырех лет. Но уже в январе 2020 года ученые приступили к работе над вакцинами против коронавируса SARS-CoV-2. Менее чем через год такие вакцины как «Спутник V», вакцина компаний BioNTech и Pfizer были одобрены к применению, а в декабре началась массовая вакцинация населения во многих странах мира, в том числе и России. О том как работает российская вакцина читайте в нашем материале.

Еще больше увлекательных статей об удивительных открытиях 2020 года читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте.

Вода на Луне

Вода на Луне. Фото:NASA

31 октября специалисты NASA подтвердили, что с помощью спектрографа SOFIA обнаружилb воду, захваченную внутри освещенной Cолнцем поверхности Луны. Подтверждая, что на Луне может быть больше воды, чем предполагалось ранее, в NASA заявили, что вода не ограничивается холодными, затененными лунными местами, а распределяется по всей лунной поверхности.

Но для Луны это удивительный показатель, тем более для ее солнечной стороны. На теневой стороне спутника действительно может храниться вода. Ученые считают, что она в замороженном состоянии точно есть в холодных микроловушках. Так называются мелкие впадины на поверхности Луны, в которых постоянно удерживается экстремально низкая температура в районе -160.

Интересно, что на солнечной стороне вода не может перейти в твердое состояние из-за солнечного тепла. На данный момент исследователи точно не знают, как молекулы воды сохраняются на светлой стороне Луны. Но есть предположение, что они таятся в пустотах между зернами лунного грунта. По словам астрофизика Пола Герца (Paul Gertz), это открытие доказывает, что ученым до сих пор мало что известно о лунной поверхности. Если жидкость есть даже на солнечной стороне спутника, значит, на теневой части ее может быть еще больше.

Запуск космического корабля SpaceX Crew Dragon на МКС

Стыковка корабля Crew Dragon с МКС.

Ночью 16 ноября компания SpaceX во второй раз использовала свой космический корабль Crew Dragon для отправки людей на Международную космическую станцию. Как пишет в своей статье мой наш автор Рамис Ганиев, «изначально запуск корабля планировалось произвести раньше, но его перенесли из-за плохих погодных условий. Но 16 ноября, в 03:27 по Москве, ракета-носитель Falcon 9 с кораблем Crew Dragon успешно поднялась в воздух с мыса Канаверал, штат Флорида. После вывода корабля на достаточную высоту, первая ступень Falcon 9 отделилась от нее и благополучно опустилась на плавучую платформу в Атлантическом океане. После небольшого ремонта ее можно будет использовать повторно».

Читайте также: Астронавты провели экскурсию по кораблю Crew Dragon и рассказали про плюшевого динозавра

Чипирование Neuralink Илона Маска

Мозговая активность свиньи выглядит так.

2020 года запомнится многим как год, в котором Илон Маск практически в прямом смысле этого слова чипирует свиней. Еще в 2016 году основатель компаний Tesla и SpaceX открыл компанию Neuralink, главная цель которой создание полноценного нейроинтерфейса, связывающего человеческий мозг с компьютером. Спустя четыре года работы чтобы продемонстрировать как выглядит чип, насколько хорошо работает и в каких целях может использоваться, представители Neuralink подключили устройство к мозгу свиньи. Прямая трансляция с мероприятия велась на официальном YouTube-канале Neuralink и по-прежнему доступна для просмотра.

Самое жаркое десятилетие в истории

Температура на нашей планете растет с каждым годом, а последствия ее изменения негативно сказываются на состоянии дикой природы. В 2020 году результаты многочисленных исследований свидетельствуют о том, что рекордные температуры зарегистрированы даже в Арктике, нагревается вдвое быстрее, чем вся остальная часть планеты, создавая самый настоящий экологический хаос для растений и животных. Тревожные данные также гласят, что новый температурный рекорд может быть поставлен уже в 2024 году.

Это интересно: Какие страны сильнее других пострадают от изменения климата?

Составлена самая подробная карта Вселенной

Перед вами будни Вселенной: ускорение и распад материи, нагретой до сверхвысоких температур, обжигающий газ, черные дыры и взрывы звезд.

В середине лета 2020 года была представлена самая подробная из когда-либо созданных 3D-карта Вселенной. В составленной более чем 100 астрофизиками карте использовались данные о недавно открытых тусклых галактиках. На самой подробной и обширной карте звездного неба насчитывается около миллиона источников рентгеновского излучения. Рассеянное красное свечение в верхней и нижней частях карты в основном рентгеновское излучение от горячего газа далеко за пределами Млечного Пути. Белые крапинки представляют собой сигнатуру сверхмассивных черных дыр. Удивительно, но около 80% всех источников на новой карте гигантские черные дыры, которые находятся в центрах далеких галактик.

Подробнее..

Симуляция или нет? Почему некоторые ученые полагают, что наш мир нереален?

09.01.2021 00:18:18 | Автор: admin

Кадр из сериала «Черное зеркало», эпизод Playtest.

В одной из серий мультсериала «Рик и Морти» один из главных героев, будучи похищенным инопланетянами, попадает в ультра-высокотехнологичную компьютерную симуляцию и не замечает этого, продолжая заниматься привычными делами. Но может ли нечто подобное происходить с нами? Может ли быть так, что все, что мы видим, чувствуем, и слышим на самом деле нереально? В 2003 году профессор Оксфордского университета, шведский философ Ник Бостром написал статью, в которой привел аргументы в пользу того, что наш мир компьютерная симуляция. По мнению Бострома, «если мы живем в симуляции, то наблюдаемая Вселенная всего лишь крошечный кусочек того, что физически существует. Хотя мир, который мы видим, в некотором смысле «реален», на фундаментальном уровне реальности он не находится». Но неужели все в нашей Вселенной от мельчайшего атома до самой большой галактики не более чем компьютерный проект на жестком диске какого-то всемогущего существа?

Аргумент моделирования

Да, на первый взгляд представление о реальности как о компьютерной симуляции может показаться смехотворным. Но если вспомнить достижения человечества в области компьютерных игр, виртуальной реальности и робототехники (а некоторые игры сегодня настолько хорошо передают визуальные и физические свойства нашего мира), что вопрос о том, не живем ли в чем-то подобном больше не кажется бредом сумасшедшего.

В своей основополагающей статье 2003 года Ник Бостром впервые сформулировал «аргумент моделирования». Суть его заключается в том, что наша реальность на самом деле искусно смоделирована и управляется с помощью продвинутых компьютерных технологий. Шведский философ предположил, что развитые цивилизации, обладая технологиями с огромными вычислительными мощностями, могут запустить компьютерное моделирование своих предков то есть нас с вами и, учитывая сложность технологии, мы не будем знать, что на самом деле наш мир нереален.

Интересно и то, что всего за несколько десятилетий ученым удалось разработать устройства, способные изучать и имитировать многие основные характеристики человеческого интеллекта. Если вычислительная мощность продолжит расти по существующей траектории, возможно, наши потомки (или другая разумная жизнь) смогут легко создать симуляцию Вселенной.

Возможно, вся наша жизнь нереальна. Но мы никогда об этом не узнаем. Или нет?

Несколько известных ученых и философов выразили свою поддержку теории моделирования. Так, в 2016 году во время ежегодных дебатов в Американском музее естественной истории (Isaac Asimov Memorial Debate) астрофизик и популяризатор науки Нил Деграсс Тайсон сказал, что шансы того, что наша Вселенной является моделируемой реальностью, составляют 50 на 50. Тайсон также указал на большой разрыв в интеллекте между шимпанзе и людьми и это при том, что наши ДНК совпадают на 98%. Таким образом, существо, во много раз превосходящее нас по уровню интеллектуального развития, может как существовать, так и потенциально создать симуляцию нашего мира.

Еще один аргумент в пользу теории моделирования исходит от физика-теоретика Джеймса Гейтса из Мэрилендского университета, который изучает материю на уровне кварков субатомных частиц, из которых состоят протоны и нейтроны в ядрах атомов. По мнению ученого, кварки подчиняются правилам, которые в чем-то напоминают компьютерные коды, корректирующие ошибки в обработке данных. Правда, как именно эти «корректирующие коды», которые в реальном мире помогают работать браузерам, оказались в уравнениях о кварках, электронах и суперсимметрии остается загадкой.

Это интересно: Может ли Вселенная осознанно имитировать собственное существование?

В свою очередь космолог Алан Гут из Массачусетского технологического института предполагает, что Вселенная может реально существовать и одновременно являться лабораторным экспериментом. Согласно его гипотезе, наш мир создан неким сверхразумом, подобно тому, как биологи в лабораториях растят колонии микроорганизмов. В таком случае Вселенная, в которой проводился бы подобный эксперимент, осталась бы целой и невредимой. Новый мир образовался бы в отдельном пространственно-временном пузыре, который быстро отделился бы от материнской вселенной и потерял с ней контакт.

Тем не менее, какие бы удивительные и порой провокационные теории не выдвигали исследователи, почти невозможно доказать, что мы находимся в реальной вселенной, потому что любое "доказательство" может быть частью программы.

Природа реальности

Несмотря на солидные философские и теоретические аргументы, некоторые из которых изложены выше, в 2017 году команда исследователей из Оксфордского университета нашла достаточно убедительные доказательства того, что наша Вселенная это нечто большее, чем мобильное приложение. Доказательства? Попытки смоделировать конкретные квантовые явления, такие как эффект Холла, быстро выходят из-под контроля согласно работе, опубликованной в журнале Science Advances, моделирование всего нескольких сотен электронов с помощью квантового метода требует большего количества атомов, чем существует во Вселенной.

Кадр из мультсериала «Рик и Морти» в котором главные герои оказываются в симуляции, созданной пришельцами.

Но что же происходит, если допустить, что мы живем в симуляции? Некоторые эксперты предполагают, что по мере продолжения работы программы будут возникать проблемы так сказать, сбои в матрице. Как пишет The New Yorker, некоторые философы, например Дэвид Чалмерс из Нью-Йоркского университета, предполагают, что все более странные события в «реальном» мире могут свидетельствовать о том, что наша Вселенная является чьей-то симуляцией. За пределами моделирования Вселенной эти события могут представлять собой расходящиеся «точки» в реальности. Таким образом, каждый выбор, каким бы незначительным он ни был, может создать свою собственную Вселенную.

Читайте также: Астрономы создали 8 миллионов Вселенных внутри компьютера. И вот что они узнали

И все же, в то время как странные события и странно упорядоченная природа фундаментальной математики указывают на возможность того, что наш мир это компьютерная симуляция, недавние квантовые исследования предполагают, что Вселенная слишком сложна для моделирования. А как вы думаете, наша реальность и правда симуляция или есть еще более умопомрачительные теории? Ответ будем ждать здесь, а также в комментариях к этой статье.

Подробнее..

Есть ли что-нибудь за пределами наблюдаемой Вселенной?

07.05.2021 22:03:01 | Автор: admin

Перед вами цветной рентген-снимок Вселенной в ее самый обычный день: ускорение и распад материи, нагретой до сверхвысоких температур, обжигающий газ, ненасытные черные дыры и взрывы звезд.

Вопрос о том, что находится за пределами Вселенной представители рода человеческого задавали себе не одно столетие. Но приблизительное понимание того, что представляет собой наш космический дом, появилось (по меркам той же Вселенной) совсем недавно. Сегодня мы знаем, что Вселенная родилась около 14 миллиардов лет назад в результате Большого взрыва и с тех пор расширяется с ускорением, параллельно остывая. Кажется, это противоречит здравому смыслу, но чтобы понять удивительные законы космоса и то, как они работают, умнейшие из нас трудились не одно поколение. Но знания, накопленные за эти годы, увы, по-прежнему не позволяют собрать головоломку воедино. Да, мы знаем, как выглядит наблюдаемая Вселенная с помощью мощнейших телескопов ученые наносят на карту не только звезды, но миллиарды галактик и их скопления, заглядывая все дальше и дальше в прошлое, вплоть до Большого взрыва. Но могут ли они узнать, находится ли что-то за пределами нашей Вселенной? Есть ли что-нибудь там, куда не только невозможно отправить самые мощные инструменты, но и попросту заглянуть?

Что мы знаем о Вселенной?

Чтобы ответить на вопрос о том, что находится за пределами вселенной, сначала нужно точно определить, что мы подразумеваем под «вселенной». Если вы воспринимаете это буквально как все вещи, которые могут существовать во всем пространстве и времени, то за пределами вселенной не может быть ничего. Даже если вы представляете, что вселенная имеет некоторый конечный размер, и представляете что-то вне этого объема, тогда все, что находится снаружи, также должно быть включено во вселенную.

Даже если вселенная представляет собой бесформенную, безымянную пустоту абсолютное ничего это все равно является чем-то и входит в список «всего существующего» и, следовательно, по определению является частью вселенной. Если вселенная бесконечна по размеру, то беспокоиться об этой головоломке действительно не нужно. Вселенная, будучи всем, что есть, бесконечно велика и не имеет края, поэтому нет ничего «внешнего», о котором можно было бы говорить.

Часть наблюдаемой Вселенной, доступной для изучения современными астрономическими методами, называется Метагалактикой; она расширяется по мере совершенствования приборов.

С другой стороны, конечно, есть внешняя сторона нашего наблюдаемого участка Вселенной. Космос стар и свет распространяется быстро. Таким образом, за всю историю вселенной мы не получали свет от каждой отдельной галактики. В настоящее время ширина наблюдаемой Вселенной составляет около 90 миллиардов световых лет. И, по-видимому, за этой границей находятся миллиарды других случайных звезд и галактик.
Но есть ли что-то помимо этого?

Читайте также: Можно ли разгадать тайну расширения Вселенной?

Границы Вселенной

Космологи не уверены, является ли Вселенная бесконечно большой или просто чрезвычайно большой. Чтобы измерить Вселенную, астрономы вместо этого смотрят на ее кривизну. Геометрическая кривая в больших масштабах Вселенной говорит о ее общей форме. Если вселенная идеально геометрически плоская, то она может быть бесконечной. Если она изогнута, как поверхность Земли, то она имеет конечный объем.

Как пишет в статье для Space.com астрофизик Пол Саттер, текущие наблюдения и измерения кривизны Вселенной показывают, что она практически идеально плоская. Можно подумать, будто это означает, что вселенная бесконечна, но все не так просто. Даже в случае плоской вселенной космос не обязательно должен быть бесконечно большим.

«Возьмем, к примеру, поверхность цилиндра. Он геометрически плоский, потому что параллельные линии, нарисованные на поверхности, остаются параллельными (это одно из определений «плоскостности»), и все же он имеет конечный размер. То же самое можно сказать и о Вселенной: она может быть абсолютно плоской, но замкнутой в себе», Пол Саттер, астрофизик из SUNY Stony Brook и Института Флэтирона в Нью-Йорке.

Перед вами галактика, обнаруженная на краю Вселенной.

Но даже если вселенная конечна, это не обязательно означает, что где-о есть ее край. Возможно, наша трехмерная вселенная встроена в какую-то более крупную многомерную конструкцию. Это совершенно нормально и действительно является частью некоторых экзотических моделей физики. Но в настоящее время у ученых нет абсолютно никакой возможности проверить это.

Это интересно: Почему физики считают, что мы живем в Мультивселенной?

Неправильный впорос?

Вселенную можно представить как гигантский шар, наполненный звездами, галактиками и всевозможными интересными астрофизическими объектами. То, как эти объекты выглядят снаружи, также несложно представить вспомните знаменитые фотографии астронавтов из космоса они часто смотрят на земной шар с безмятежной орбиты наверху. Но эта общая перспектива вряд ли нужна вселенной для существования, ведь она просто есть.

«Когда вы представляете вселенную в виде шара, плавающего посреди пустоты, вы разыгрываете над собой мысленный трюк, которого математика не требует», пишет Саттер.

Многие физики всерьез рассматривают теорию Мультивселенной, согласно которой существует бесчисленное множество миров.

Вообще, учитывая накопленный массив данных о наблюдаемой Вселенной (и хорошенько поразмыслив), кажется, что вопрос о том, находится ли что-то за ее пределами попросту не имеет смысла. Это все равно, что спрашивать «Какой звук издает фиолетовый цвет?» Откровенно бессмысленный вопрос, потому что в нем мы пытаемся объединить две несвязанные концепции. А как вы думаете, находится ли что-то за пределами Вселенной и не бессмысленный ли это вопрос? Ответ будем ждать в нашем Telegram-чате, а также комментариях к этой статье.

Подробнее..

Где в Млечном Пути обнаружить инопланетян?

09.07.2021 16:06:53 | Автор: admin

Жизнь в Млечном Пути точно есть? Можно ли это узнать?

Пока население планеты растет, а миллиардеры реализуют планы по колонизации других миров (когда нас будет 11 миллиардов, а по оценкам это произойдет уже к 2100 году, не все захотят тесниться на одном шарике), разговоры об инопланетянах, кажется, несколько вышли из моды. Многие как будто не замечает насколько восхитительно устроен наш мир и Вселенная, предпочитая размышлять о вещах более насущных. Я как-то попыталась заговорить с бывшими коллегами о мультивселенной, множественности миров и инопланетной жизни. За отсутствием интереса в глазах слушателей и неприкрытым зеванием, больше мы ни о чем таком не разговаривали. К счастью, теперь у меня самая классная работа на свете, поэтому говорить о существах и организмах, вероятно населяющих как планеты Солнечной системы, так и планеты в далеких галактиках, будем спокойно и много. Как полагается. К тому же, есть повод результаты нового исследования показали, что движение звезд в галактиках способствует колонизации планет и распространению цивилизации. Так стоит ли искать жизнь в пределах нашей Галактики?

Маяк галактики Млечный Путь

Результаты нового исследования подтверждают прошлые предложения исследователей о поисках жизни в Галактическом центре. Дело в том, что центр Галактики можно не только быстро колонизировать, но и эффективно сканировать на предмет технологий. У нас есть возможность наблюдать центр Галактики, который охватывает самую плотную область пространства относительно нас. Центр Млечного Пути заполнен более старыми планетами, на которых жизнь могла появиться задолго до нашего с вами появления на свет.

Центр также служит логичным местом для «общения» с и из центральной координационной точки Галактики. «Если бы вы хотели послать сигнал в остальную часть Галактики, то могли бы сделать это из центра, чтобы покрыть диск Млечного Пути. Аналогично если вы хотите обнаружить сигнал инопланетной цивилизации, то стоит обратиться к тому же центру», пишут авторы нового исследования, опубликованного в журнале RNAAS Reasearch Notes of the AAS.

Исследователи также выдвинули гипотезу, согласно которой развитая инопланетная цивилизация может использовать энергию центральной сверхмассивной черной дыры Млечного Пути сигнального маяка всей Галактики. Но если все так, то где же жители других миров?

Хотите всегда быть в курсе последних новостей из мира популярной науки и высоких технологий? Подписывайтесь на наш канал в Telegram чтобы не пропустить ничего интересного!

И снова где все?

Ситуацию с нашим оглушительным космическим одиночеством усугубляет скорость колонизации Галактики развитыми цивилизациями вот почему мы ни от кого ничего не слышали. Авторы исследования также обращают внимание, что во время колонизации цивилизация может разработать новые двигательные технологии, сокращающие время передвижения по Вселенной.

И все же предварительное радиосканирование ядра Галактики не выявило никаких сигналов. Возможно, сама тишина и есть ответ. Галактика настолько стара, и у нее так много времени для появления и распространения жизни, что некоторые считают, что тишина лишает нас всякой надежды на встречу с кем-либо.

Но надежда еще есть! Моделирование показывает, что возможно, что некоторые части Галактики никогда не будут заселены, несмотря на целые временные эпохи. Это вопрос эффективности. «Представьте, что вы хотите колонизировать все в округе на как можно более коротких расстояниях. Со временем некоторые колонии вымирают и теряются, возможно, из-за истощения ресурсов или катастрофического события. Вместо того чтобы тянуться дальше в космос, колонии предпочитают заново заселять мертвую колонию на более близком расстоянии. Скопления населенных колоний образуются в окружении необитаемых планет, которые никогда не колонизировались,» пишут исследователи.

Сверхмассивные черные дыры одни из самых таинственных объектов во Вселенной.

«Устойчивое состояние» достигается там, где районы обитаемых миров Млечного Пути просто слишком неэффективны для колонизации.

Но молчание далеких звезд можно объяснить иначе. Возможно, долгоживущие цивилизации руководствуются устойчивостью, чтобы расти медленнее, чем ожидалось. Если существует несколько колонизирующих цивилизаций, возможно, они конкурируют за ресурсы или держатся на расстоянии друг от друга.

Возможно, цивилизации заботятся о том, чтобы не вмешиваться в жизнь обитаемых планет, таких как наша (аналогично Главной директиве в «Звездном пути»), или опасаются потенциальных биологических несовместимостей, с которыми сталкиваются в других мирах. Все эти возможности могут объяснить, почему мы еще никого не встретили.

Есть ли в этой мерцающей пустоте хоть кто-то, кроме нас?

Отмечу, что британский физик-теоретик Стивен Хокинг и вовсе считали, что нам не следует искать встречи с инопланетянами. О том, почему я рассказывала в этой статье, рекомендую к прочтению.

Еще больше увлекательных статей о том, какой может быть жизнь на других планетах и что будет, когда мы ее найдем, читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте!

Интересный факт

Ведущий автор исследования доктор Кэрролл-Нелленбек из Университета Рочестера в США предлагает рассмотреть так называемый «временной горизонт» точку в истории, пройдя которую на нашей планете не останется никаких следов нашего существования и более того, даже колонизации Солнечной системы.

«Допустим, например, галактическая инопланетная цивилизация высадилась на Землю миллиарды лет назад, прожила тысячи лет, а затем вымерла. По прошествии всего этого времени практически не осталось бы никаких свидетельств их присутствия», отмечает Нелленбек.

Моделирование показывает, что, учитывая наше местоположение в Галактике, существует 89% вероятность того, что по крайней мере миллион лет может пройти без визитов межзвездных кораблей этого времени потенциально достаточно, чтобы стереть следы предыдущей колонизации. Дело в том, что моделирование показало, что «между полной колонизацией Галактики или наоборот, отсутствием жизни, могут быть промежуточные интервалы обоснованный ответ на тишину, не так ли?

Если во Вселенной мы все-таки одиноки, то сколько же пропадает пространства!

Это интересно: Есть ли жизнь во Вселенной? Одиноки ли мы?

В то время как центр Галактики является идеальным будущим царством для исследований, существуют и другие регионы Галактики, которые имитируют те же благоприятные условия, что и центрально-шаровые скопления Шаровые скопления (GC) это древние массивные скопления звезд, вращающихся вокруг центра Галактики на расстояниях в десятки тысяч световых лет.

Шаровые скопления невероятно плотны, звезды в них в среднем расположены гораздо ближе друг к другу, чем в диске Млечного Пути. Проблема заключается в том, что плотность скоплений может негативно повлиять на формирование планет, а также на их орбитальную стабильность. Ну а закончить эту статью хочу цитатой сэра Артура Кларка: «существует две возможности: либо мы одиноки во Вселенной, либо нет. Обе одинаково ужасны».

Подробнее..

Существует ли на самом деле темная материя?

22.01.2021 02:09:52 | Автор: admin

Существуют веские причины, по которым ученые считают, что в космосе существует материя, которую мы не видим.

Земля слухами полнится. Так, время от времени на просторах всемирной паутины можно встретить статьи о том, что «таинственную темную материю наконец кто-то нашел» или напротив, о том, что «темной материи на самом деле не существует». Так где же истина? Что такого происходит в области космологии, что заставляет ученых буквально через день менять свое мнение? Чтобы разобраться в происходящем, придется попытаться понять что же представляет собой темная материя гипотетическая форма материи, составляющая четверть всей массы и энергии Вселенной. В современной космологии считается, что темная материя недоступна прямому наблюдению так как не взаимодействует с электромагнитным излучением. Астрофизик и популяризатор науки Нил Деграсс Тайсон говорит о темной материи как о субстанции, которую никто никогда не видел и которую невозможно поймать. Пока все, что могут астрономы это наблюдать проявление темной материи только через гравитационные эффекты, которые она оказывает на различные галактики. Предполагается, что темная материя оказывает влияние на линейную скорость вращения галактик, в результате чего галактики вращаются медленнее или быстрее. Рассказываем последние новости о том, что ученым удалось узнать об этой таинственной материи.

Аргументы «за»

Итак, согласно ведущей космологической теории, примерно 80% массы Вселенной состоит из материала, который ученые не могут непосредственно наблюдать. Эта гипотетическая материя, сегодня известная всему миру как таинственная темная материя, не излучает ни света, ни энергии. Так почему же ученые считают, что она доминирует во Вселенной?

Еще в конце 1920-х годов астрономы выдвинули гипотезу о том, что Вселенная содержит больше материи, чем видно невооруженным глазом. Несмотря на то, что доказательств существования темной материи в те годы обнаружено не было, в научном сообществе эта гипотеза прижилась. К счастью, с развитием науки и технологий перед учеными открылась масса возможностей. По мнению Питера Ван Доккума, исследователя из Йельского университета, движение звезд говорит нам, сколько материи существует во Вселенной. «Звездам все равно, в какой форме находится материя, они просто показывают нам, что она есть», утверждает он.

Между тем, темная материя может казаться загадочной из-за нашего человеческого восприятия. Зрение, например, основано на нашей чувствительности к свету: электромагнитным волнам, которые лежат в определенном диапазоне частот. Мы можем видеть материю, с которой знакомы, потому что атомы, составляющие ее, излучают или поглощают свет. Электрические заряды, переносимые электронами и протонами в атомах вот причина, по которой мы видим окружающий мир.

Таинственная темная материя, как считается, составляет большую часть Вселенной.

Однако материя не обязательно состоит из атомов. Большая ее часть может быть сделана из чего-то совершенно отдельного. Материя это любой материал, который взаимодействует с гравитацией, как это делает нормальная материя например, сгущаясь в галактики и скопления галактик. Следовательно, нет никакой причины, по которой
материя всегда должна состоять из заряженных частиц. Однако материя, не способная к электромагнитному взаимодействию будет невидима для наших глаз. Вот почему никто никогда не видел темную материю своими глазами или даже с помощью чувствительных оптических приборов.

Читайте также: Может ли темная материя быть старше Большого взрыва?

И все же ученые считают, что она существует из-за гравитационного воздействия, которое она оказывает на космические объекты. К ним относятся воздействие темной материи на звезды в нашей галактике (которые вращаются со скоростью, слишком большой для того, чтобы обуздать гравитационную силу обычной материи) и движение галактик в скоплениях галактик (опять же, слишком быстрое, чтобы быть объясненным только материей, которую мы видим); ее отпечаток на реликтовом излучении, оставшемся со времен Большого взрыва; изгиб света, известный как гравитационное линзирование; и наблюдение, что видимая и невидимая материя разделяются в объединенных скоплениях галактик.

Аргументы «против»

И все же, результаты одного из последних исследований предполагают, что темной материи может и не существовать. В работе, опубликованной в ноябре 2020 года в журнале The Astrophysical Journal, исследователи сообщают о крошечных расхождениях в орбитальных скоростях далеких звезд, которые, по их мнению, обнаруживают слабый гравитационный эффект. Этот эффект, по мнению ученых, может положить конец преобладающим представлениям о темной материи.

Авторы исследования предполагают, что за неполным научным пониманием гравитации, по-видимому, скрывается гравитационная сила галактик и скоплений галактик, а не огромные облака темной материи. Это также может означать, что чистая математика, а не невидимая материя может объяснить, почему галактики ведут себя так, как ведут. По крайне мере такое мнению в интервью NBC News высказала соавтор исследования Стейси Макго, возглавляющая кафедру астрономии в Университете Кейс Вестерн в Кливленде.

В 1970-х годах астрономы узнали, что звезды, расположенные ближе к галаткическому центру, вращаются быстрее всех остальных.

На самом деле астрономы давно предполагали, что звезды вращаются вокруг центров галактик со скоростями, предсказанными теорией гравитации, сформулированной английским физиком и математиком Исааком Ньютоном более 300 лет назад. Ньютон основывал свою теорию на наблюдениях за орбитами планет и пришел к выводу о том, что объекты притягиваются друг к другу с силой, изменяющейся в зависимости от их массы. Уточнения Альберта Эйнштейна, сделанные великим физиком в двадцатом веке, также остаются удивительно точными. А в 1970-х годах американские астрономы Вера Рубин и Кент Форд обнаружили аномалии в орбитах звезд в галактиках, предположив, что причина кроется в невидимой "темной материи" внутри и вокруг галактик.

Как полагают исследователи, гравитация вызывает лишь небольшое ускорение, не предсказанное Ньютоном и Эйнштейном, на таких низких уровнях, что его можно увидеть только в объектах размером с галактику. Что означало бы, что существование темной материи не требуется. А вот о том, сколько материи во Вселенной на самом деле, читайте в нашем материале.

Как видите, новое исследование поднимает «очень интересный вопрос», а именно можно ли объяснить темную материю другими законами гравитации. Если бы это оказалось правдой, то стало бы важнейшей вехой для космологии и физики элементарных частиц. И все же, большинство ученых скептически относятся к предположению об отсутствии темной материи, больше склоняясь к тому, что эта невидимая субстанция все же существует. А как вы думаете, правда ли темная материядоминирует во Вселенной или ее все-таки не существует? Ответ будем ждать здесь, а также в комментариях к этой статье.

Подробнее..

Что произошло в первые микросекунды после Большого взрыва?

27.05.2021 12:05:02 | Автор: admin

Исследование Института Нильса Бора раскрывает новые подробности того, что произошло в первые микросекунды после Большого взрыва

Исследователи из Копенгагенского университета выяснили, что произошло с определенным видом плазмы самой первой материей во Вселенной в течение первой микросекунды после Большого взрыва. Их открытие раскрывает часть головоломки об эволюции Вселенной, какой мы знаем ее сегодня: современная наука гласит, что около 14 миллиардов лет назад наша Вселенная перешла из гораздо более горячего и плотного состояния в радикально расширяющееся этот процесс н назвали Большим взрывом. И хотя мы знаем, что это быстрое расширение породило частицы, атомы, звезды, галактики и жизнь на нашей планете, детали того, как именно произошло рождение Вселенной, до сих пор неизвестны. Новая работа, по мнению ее авторов, проливает свет на самые первые мгновения существования всего сущего. Полученные результаты позволили исследователям пошагово восстановить эволюцию ранней Вселенной с помощью Большого адронного коллайдера в ЦЕРН физикам удалось воссоздать то крошечное окно времени, в котором вся Вселенная была относительно компактной.

Как появилась Вселенная?

Наиболее обоснованная теория происхождения нашей Вселенной гласит, что она родилась в процессе Большого взрыва. К такому выводу исследователи пришли, наблюдая за галактиками они удаляются от нашей с огромной скоростью во всех направлениях, как будто движимы древней взрывной силой.

Бельгийский священник по имени Жорж Леметр впервые предложил теорию Большого взрыва в 1920-х годах, предположив, что начало Вселенной положил один-единственный атом. Эта идея получила развитие благодаря наблюдениям Эдвина Хаббла, а также открытию в 1960х годах космического микроволнового фонового излучения (реликтового излучения или эха Большого взрыва) Арно Пензиасом и Робертом Уилсоном.

Читайте также: Существовали ли другие вселенные до Большого взрыва?

Реликтовое излучение фоновое микроволновое излучение, одинаковое во всех направлениях. Имеет спектр, характерный для абсолютно черного тела при температуре ~ 2.7 K.

Дальнейшая работа ученых помогла прояснить темп Большого взрыва. Вот что пишет об этом National Geographic:

«В первые доли секунды своего существования Вселенная была очень компактной менее миллиона миллиардов миллиардных размеров одного атома. Считается, что в таком непостижимо плотном энергетическом состоянии четыре фундаментальные силы гравитация, электромагнетизм и сильные и слабые ядерные взаимодействия были объединены в единое целое. Однако как именно это произошло, а также, как работает гравитация в субатомном масштабе, сегодня остается загадкой».

Исследователи также отмечают, что с течением времени и охлаждением материи во Вселенной начали формироваться более разнообразные виды частиц, которые в конечном итоге конденсировались в звезды и галактики. Примечательно, что к тому времени, когда возраст Вселенной составлял миллиардную долю секунды, она достаточно остыла, чтобы четыре фундаментальные силы отделились друг от друга, что позволило сформироваться фундаментальным частицам.

Предидущие исследования в этой доказали, что кварк-глюонная плазма действительно существует.

И все же во Вселенной было недостаточно жарко и многие известные сегодня частицы (например протон), просто не успели сформироваться. В дальнейшем, по мере того как Вселенная продолжала расширяться, этот обжигающе горячий первичный суп, называемый кварк-глюонной плазмой, продолжал остывать. Вот так мы и подошли к самому интересному недавно исследователи из ЦЕРН, работающие на Большом адронном коллайдере, смогли воссоздать кварк-глюонную плазму.

Интересуетесь новостями из мира науки и высоких технологий и хотите всегда быть в курсе последних открытий? Подписывайтесь на наш новостной канал в Telegram, чтобы не пропустить ничего интересного!

Самая первая материя во Вселенной

Итак, под кварк-глюонной плазмой исследователи понимают материю, которая существовала в течение первой микросекунды после Большого взрыва. Исследователи отмечают, что плазма, состоящая из кварков и глюонов, была разделена горячим расширением Вселенной, после чего остатки кварка преобразовались в так называемые адроны.

Адрон с тремя кварками образует протон, который является частью атомных ядер. Эти ядра являются строительными блоками, из которых состоит Земля, мы сами и окружающая нас вселенная.

Как выяснили авторы научной работы, кварк-глюонная плазма (QGP) присутствовала в первую 0,000001 секунды Большого взрыва, а затем исчезла из-за расширения Вселенной. Но с помощью БАК в ЦЕРН исследователи смогли воссоздать эту первую материю и проследить, что с ней произошло.

«Коллайдер сталкивает ионы из плазмы с большой скоростьюпочти как скорость света. Это позволяет нам увидеть, как QGP эволюционировал из собственной материи в ядра атомов и строительные блоки жизни», рассказал в интервью Phys.org ведущий автор исследования Ю Чжоу.

Галактика Млечный Путь одна из сотен миллиардов таких же

В течение долгого времени исследователи думали, что плазма была формой газа, но новый анализ подтвердил плазма была плавной и имела гладкую мягкую текстуру, как вода. Новые детали также продемонстрировали, показывают, что плазма со временем изменила свою форму, что удивительно и сильно отличается от любой другой известной материи.

Это интересно: Что ученым известно о возрасте и расширении Вселенной?

«Каждое открытие это кирпичик, который повышает наши шансы узнать правду о Большом Взрыве. Нам потребовалось около 20 лет, чтобы выяснить, что кварк-глюонная плазма была текучей, прежде чем она превратилась в адроны и строительные блоки жизни. Поэтому наши новые знания о постоянно меняющемся поведении плазмы являются самым настоящим прорывом», пишут авторы исследования. Полностью ознакомиться с текстом исследования можно здесь.

Подробнее..

Составлена первая подробная карта распределения темной материи во Вcеленной

01.06.2021 18:09:06 | Автор: admin

Исследователи создали самую большую в истории карту темной материи невидимого вещества, на долю которого, как считается, приходится 80 процентов всей материи во Вселенной.

В течение десятилетий астрономы подозревали, что во Вселенной больше материи, чем можно увидеть. Темная материя, как и темная энергия, остается загадочной, но ее существование выводится из того, что галактики ведут себя непредсказуемым образом. Например, тот факт, что галактики остаются сгруппированными вместе и что галактики внутри скоплений движутся быстрее, чем ожидалось. Как отмечают авторы нового исследования, видимые галактики формируются в самых плотных областях темной материи: когда мы смотрим в ночное небо, то видим свет далеких галактик, но не окружающую их темную материю, как если бы смотрели на огни ночного города. Вычисляя, как гравитация искажает свет этот метод называется гравитационным линзированием астрономы получают полную картину, как видимой, так и невидимой материи Вселенной. Результаты нового исследования показали, что материя распределена во Вселенной таким образом, который согласуется с предсказаниями стандартной космологической модели лучшей современной модели Вселенной. О том, как ученым удалось составить самую подробную карту распределения таинственной темной материи во Вселенной рассказываем в этой статье.

Материя, которую нельзя увидеть

Внимательно всматриваясь в ночное небо астрономы ХХ века заметили кое-что странное наблюдая за движением небесных тел они обнаружили, что оно отклоняется от законов небесной механики. Как правило подобное отклонение являлось следствием наличия поблизости неизвестного материального тела (или нескольких) именно так были открыты Нептун и звезда Сириус В. Но так было далеко не всегда.

Впервые «темную материю» как ненаблюдаемую материю, о существовании которой можно судить лишь по ее гравитационному воздействию, описал в 1922 году голландский астроном Якобус Каптейн. Впоследствии его ученик Ян Оорт в 1932 году опубликовал свою, более точную оценку плотности темной материи в Млечном Пути (на основании анализа вертикальных колебаний звезд относительно плоскости Галактики). Благодаря работе ученых в те годы считалось, что темная материя представляет собой в буквальном смысле темное вещество Вселенной, не излучающее достаточно света.

Темная материя не поддается прямому наблюдению, так как не участвует в электромагнитном взаимодействии.

Сегодня мы знаем, что темная материя составляет 80% Вселенной. К доказательствам ее существования на сегодняшний день относятся данные, полученные с помощью гравитационного линзирования, а также компьютерных моделей, описывающих движение галактик и других небесных тел в наблюдаемой Вселенной.

Читайте также: Можно ли обнаружить темную материю на Земле или в Солнечной системе?

Поскольку материя искривляет пространство-время, астрономы могут составить карту ее существования, глядя на свет, падающий на Землю из далеких галактик. Если свет был искажен, это означает, что на переднем плане есть материя, изгибающая свет, когда он приближается к нам.

Искажая свет

В ходе нового исследования команда астрономов из Dark Energy Survey (DES) использовала искусственный интеллект для анализа изображений 100 миллионов галактик. Ученые внимательно изучали их форму, чтобы увидеть, был ли искажен свет, исходящий от них.

«Новая карта представляет собой расположение всей материи, обнаруженной на переднем плане наблюдаемых галактик, и охватывает четверть неба южного полушария,» пишет New Scientist со ссылкой на исследование.

Темная материя самая распространенная материя во Вселенной.

Найл Джеффри из Университетского колледжа Лондона, входящий в команду DES, отмечает: «Это настоящее чудо-увидеть эти огромные, скрытые структуры на большом участке ночного неба». Интересно, что на карте (на ней в основном показана темная материя) можно увидеть картину, аналогичную паутинной структуру с плотными сгустками материи, разделенными большими пустотами. Примечательно, что наблюдение за структурами космического масштаба может помочь ученым ответить на фундаментальные вопросы о Вселенной.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

Карта темной материи

Авторы исследования, возглавляющие проект также отмечают, что новая карта показывает новые части Вселенной, которые мы никогда раньше не видели. «Мы действительно можем видеть структуру космической паутины, включая эти огромные структуры, называемые космическими пустотами, которые представляют собой области Вселенной с очень низкой плотностью, где очень мало галактик и меньше материи».

Ученые интересуются этими структурами, так как предполагают, что гравитация может вести себя внутри них совсем по-другому. Таким образом, определив их формы и расположение, карта может стать отправной точкой для дальнейшего изучения. Помимо прочего карта также приближает ученых к пониманию того, из чего состоит Вселенная и как она эволюционировала.

Самые яркие области карты показывают самые плотные области темной материи, соответствующие сверхскоплениям галактик, в то время как черные пятна представляют собой космические пустоты.

Расчеты команды DES показывают, что распределение этого вещества в целом согласуется с прогнозами в стандартной модели, оно не является идеальным.

Согласно стандартной модели космологии, Вселенная началась с большого взрыва, а затем она расширилась, и материя эволюционировала в соответствии с общей теорией относительности Эйнштейна, которая описывает гравитацию. Эти гравитационные силы и создали сгустки и пустоты материи, которые составляют космическую паутину. Подробнее о том, что представляет собой эта гигантская структура, я рассказывала в этой статье.

Подробнее..

Физики впервые увидели, как фотоны преобразуются в материю

18.08.2021 02:11:12 | Автор: admin

С помощью процесса Брейта-Уилера чистый свет потенциально можно преобразовать в материю.

«Мы живем на ничем не примечательной планете, которая вращается вокруг ничем не примечательной звезды. Но у нас есть шанс познать Вселенную», так говорил один из величайших ученых нашего времени, британский физик-теоретик Стивен Хокинг. Прекрасные слова, правда? Вселенная и мир, который нас окружает, удивительны. Атомы, которые зародились в ядрах сверхновых звезд теперь составляют нас самих и все живое на Земле. Но наше понимание Вселенной, увы, мало назвать неполным мы видим лишь малую ее часть с помощью наших лучших инструментов, а разгадать ее величайшие загадки по-прежнему не в силах. Но, результаты нового исследования, кажется, могут изменить ситуацию. Авторы научной работы полагают, что материя во Вселенной создается путем столкновения фотонов. Если достаточно сильно столкнуть два фотона, то можно создать материю: электрон-позитронную пару, преобразование света в массу в соответствии со специальной теорией относительности Эйнштейна. Это явление называется процессом Брейта-Уилера и впервые было изложено в 1934 году.

Что такое процесс Брейта-Уилера?

Процессом Брейта-Уилера исследователи называют простейшую реакцию, с помощью которой свет можно превратить в вещество. В 1934 году Грегори Брейт и Джон А. Уилер разработали теорию процесса электрон-позитронной пары при столкновении двух фотонов. Полученные выводы ученые опубликовали в научном журнале Physical Review.

Однако, несмотря на удивительные выводы исследователей, они не предполагали реальной демонстрации процесса. Все потому, что в те годы способа придать фотону необходимую энергию попросту не существовало.
Хотя процесс является одним из проявлений эквивалентности массы и энергии, в 2014 году команда исследователей пришла к выводу, что процесс Брейта-Уилера никогда не наблюдался на практике из-за сложности фокусировки встречных гамма-лучей.

Свет можно преобразовать в материю. Кто бы мог подумать?

Это интересно: Что такое темные фотоны и почему физики снова начали их искать

Но прямое наблюдение чистого явления, включающего всего два фотона, оставалось неуловимым, главным образом потому, что фотоны должны быть чрезвычайно энергичными, а у ученых нет технологии для создания гамма-лазера. Но физики из Брукхейвенской национальной лаборатории говорят, что нашли способ обойти этот камень преткновения с помощью релятивистского коллайдера тяжелых ионов (RHIC) он, в конечном итоге, позволил физикам наблюдать процесс Брейта-Уилера в действии.

Как фотоны преобразуются в материю?

Как следует из названия коллайдера, ускорение ионов это ускорение атомных ядер, лишенных своих электронов. Поскольку электроны имеют отрицательный заряд, а протоны (внутри ядра) имеют заряд положительный, в результате процесса Брейта-Уилера остается ядро с положительным зарядом. Чем тяжелее элемент, тем больше в нем протонов и тем сильнее положительный заряд образующегося иона.

В ходе исследования команда использовала ионы золота, которые содержат 79 протонов, и мощный заряд. Когда ионы золота ускоряются до очень высоких скоростей, они генерируют круговое магнитное поле, которое может быть таким же мощным, как перпендикулярное электрическое поле в коллайдере. Там, где они пересекаются, эти равные поля могут создавать электромагнитные частицы, или фотоны.

Диаграмма, показывающая, как близкое попадание ионов золота приводит к столкновениям фотонов. (Изображение предоставлено исследователями Брукхейвенской лаборатории)

Когда ионы движутся со скоростью, близкой к скорости света, ядро золота окружает пучок фотонов, которые движутся вместе с ним, как облако, объясняют авторы научной работы. В коллайдере RHIC ионы ускоряются до релятивистских скоростей то есть тех, которые составляют значительный процент от скорости света. В этом эксперименте ионы золота были ускорены до 99,995 процента скорости света.

Хотите всегда быть в куре последних новостей из мира науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

Вот где происходит волшебство: когда два иона просто разминулись, два их облака фотонов могут взаимодействовать и сталкиваться. Сами столкновения обнаружить невозможно, но возникающие в результате электрон-позитронные пары поддаются наблюдению. «Однако одного обнаружения электрон-позитронной пары недостаточно», пишут авторы исследования.

Дело в том, что фотоны, образующиеся в результате электромагнитного взаимодействия, являются виртуальными фотонами, ненадолго появляющимися и исчезающими, и не имеют той же массы, что и их «реальные» аналоги. А для наблюдения процесса Брейта-Уилера должны столкнуться два реальных фотона, а не виртуальных.

Интересный факт
Частицы материи и антиматерии пары электронов и позитронов можно создать, столкнув высокоэнергичные фотоны, представляющие собой квантовые "пакеты" света. Фотоны преобразуются в материю, и это следствие формулы Эйнштейна E = mc, которая показывает взаимозаменяемость энергии и материи.

Процесс Брайта-Уилера

Но при релятивистских скоростях виртуальные частицы могут вести себя как настоящие фотоны. К счастью, теперь физики могут определить, какие пары электрон-позитрон образуются в процессе Брейта-Уилера: они проанализировали 6000 пар электронов и позитронов, которые образовались в ходе столкновения ядер атомов золота на коллайдере (RHIC). Также физики измерили все распределения энергии, массы и квантовые числа систем.

Они согласуются с теоретическими расчетами того, что произойдет с реальными фотонами, сказал физик Даниэль Бранденбург из Брукхейвенской лаборатории. Наши результаты дают четкие доказательства прямого одноэтапного создания пар материя-антиматерия в результате столкновений света, как первоначально предсказывали Брейт и Уилер».

Читайте также: Что квантовая физика может рассказать о природе реальности?

Следует также отметить, что работа команды в высшей степени убедительна по крайней мере, она показывает, что исследователи идут по правильному пути. Ну а пока они будут продолжать наблюдения за созданием материи, мы смело можем ожидать дальнейших и удивительных открытий.

Подробнее..

Как один телескоп обнаружил сотни таинственных радиосигналов из космоса?

15.06.2021 16:05:44 | Автор: admin

Сотни загадочных быстрых радиовсплесков были обнаружены в космосе благодаря канадскому телескопу и международной группе исследователей.

Впервые быстро исчезающие радиовсплески ученые наблюдали еще в 2007 году. Последующее десятилетия исследований позволили обнаружить около 140 вспышек по всей Вселенной. Немного, правда? Дело в том, что быстрые радиовсплески (FRBS) действительно трудно поймать: для этого необходимо направить радиотелескоп в нужное место в нужное время. При этом предсказать, где и когда удастся поймать всплеск неизвестно. Исследователи отмечают, что большинство радиотелескопов видят только участок неба размером с Луну в данный момент времени, что означает, что подавляющее большинство быстрых радиовсплесков остаются невидимыми. Ситуация, к счастью, изменилась, когда телескоп CHIME, расположенный в Радиоастрофизической обсерватории Доминиона в Британской Колумбии в Канаде, начал принимать радиосигналы. Это произошло в 2018 году в течение первого года работы инструмента и в конечном итоге позволило ученым создать каталог быстрых радиовсплесков. Примечательно, что каталог не только расширяет известное количество быстрых радиовсплесков, но и доступную информацию об их местоположении и свойствах.

Что такое быстрые радовсплески?

Быстрые радиовсплески (FRBS) это очень короткие, но очень интенсивные импульсы радиоволн, регистрируемые в радиодиапазоне электромагнитного спектра, которые вспыхивают в течение нескольких миллисекунд, прежде чем исчезнуть без следа. Впервые обнаруженные только в 2007 году, эти события по-прежнему остаются загадкой для астрономов.

Интересно, что эти короткие и таинственные маяки были замечены в различных и отдаленных частях Вселенной, а также в нашей собственной галактике. Их происхождение неизвестно, а внешний вид непредсказуем. Учитывая огромное количество вопросов,которые вызывают FRBS у исследователей, данные, полученные с помощью стационарного радиотелескопа в Британской Колумбии позволили астрономам увеличить число обнаруженных радиовсплесков в четыре раза.

Массив радиотелескопов CHIME обнаружил 535 быстрых радиовсплесков в первый год своей работы.

Телескоп CHIME, специально разработанный для канадского эксперимента по картированию интенсивности водорода, обнаружил 535 новых быстрых радиовсплесков в течение первого года своей работы, между 2018 и 2019 годами. Основываясь на имеющихся наблюдениях, исследователи полагают, что одиночные быстрые радиовсплески могут иметь источники, отличные от повторяющихся:

«Имея все эти источники, мы действительно можем начать получать представление о том, как выглядят FRBS в целом, какая астрофизика может быть движущей силой этих событий и как они могут быть использованы для изучения Вселенной в будущем», сказала Кейтлин Шин, член CHIME и аспирант кафедры физики Массачусетского технологического института в интервью CNN.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Telegram чтобы не пропустить ничего интересного!

Как работает радиотелескоп CHIME?

Телескоп CHIME функционирует немного иначе, чем другие, используемые для радиоастрономии инструменты. Массив из четырех гигантских радиоантенн, сравнимых по размеру и форме с полутрубками, используемыми для сноуборда, совершенно неподвижен. Когда Земля вращается вокруг своей оси, этот массив принимает радиосигналы с половины неба.

Как правило, радиопередатчики перемещаются, чтобы захватить свет из разных областей неба. Вместо этого CHIME использует полностью цифровую конструкцию и имеет коррелятор цифровой сигнальный процессор для захвата входящих радиосигналов. Он может обрабатывать огромные объемы данных около 7 терабит в секунду, что эквивалентно небольшому проценту глобального интернет-трафика. Интересно и то, что повторяющиеся вспышки радиовсплесков выглядят по-разному каждая вспышка длится немного дольше, чем одиночные вспышки.

Таинственные быстрые радиовсплески прослеживаются до спиральных рукавов галактики.

Читайте также: В далеком космосе обнаружены круглые, таинственные объекты

Цифровая обработка сигналов это то, что позволяет CHIME «смотреть» в тысячах направлений одновременно. Основываясь на собранной информации, исследователи подсчитали, что эти яркие быстрые радиовсплески, вероятно, происходят около 800 раз в день по всему небу.

Составители каталога также считают, что в будущуем смогут использовать вспышки, чтобы лучше понять Вселенную и даже составить карту распределения по ней газа. Дело в том, что когда радиоволны путешествуют в пространстве, вполне вероятно, что они сталкиваются с газом или плазмой. Это может исказить волны, изменить их свойства и даже траекторию. Определение этой информации о радиовсплеске может помочь ученым оценить пройденное ими расстояние и количество газа, с которыми они столкнулись.

«Быстрые радиовсплески несут в себе запись структуры Вселенной, через которую им прошлось пройти, чтобы добраться от источника к нам», — пишут исследователи. «Из-за этого мы думаем, что они станут основным инструментом для изучения Вселенной.

Радиоастрономия ключ к пониманию Вселенной.

При достаточно быстрых радиовсплесках, возможно, удастся составить карту крупномасштабной структуры Вселенной. «Эти большие структуры составляют нити космической паутины», — сказал Алекс Джозефи, докторант по физике в Университете Макгилла в Канаде.

«С помощью каталога FRB мы обнаружили эту корреляцию между FRB и крупномасштабной структурой. Это действительно, действительно захватывающе и открывает новую эру космологии.» О том, что представляют собой крупномасштабные структуры и могут ли они управлять Вселенной я рассказывала в этой статье.

Подробнее..

Можно ли услышать столкновение черных дыр? Ученые записали музыку космоса

08.07.2021 20:03:53 | Автор: admin

Ученые превратили электромагнитные и гравитационные волны, которые, в отличие от звуковых волн, могут перемещаться в вакууме, в музыкальные треки.

Если две черные дыры сталкиваются в космическом вакууме, издают ли они звук? Звуковые волны не могут распространяться в почти идеальном космическом вакууме никто не услышит, как вы кричите, как гласит слоган «Чужого». Но электромагнитные и гравитационные волны могут, и недавно исследователи превратил эти сигналы из космоса в музыку. Альбом «Небесные заклинания» (Celestial Incantations) включает в себя космические «звуки» изнутри и за пределами нашей солнечной системы, такие как колебания кометы, излучение галактического пульсара и слияние двух черных дыр. Альбом является результатом сотрудничества Ким Кунио, профессора из Австралийского национального университета, британской художницы Дианы Скарборо и доктора Найджела Мередита из Британской антарктической службы. Трио вместе выбирало звуки для альбома, использовав звуки космоса с акустическими инструментами для создания каждого трека.

Как «звучат» черные дыры?

«Услышать» черные дыры можно. Только косвенно точно так же как и «увидеть». Причина известна ничто не может избежать черной дыры, но это верно только для материи, которая пересекает горизонт событий гравитационную точку невозврата. Черные дыры могут оказывать и оказывают заметное влияние на окружающую среду.

Один из способов обнаружить черные дыры звездной массы это найти двойную звездную систему, частью которой они являются. Влияние черной дыры на звезду-компаньона ученые наблюдают здесь, на Земле существуют эффекты, подобные тому, как черная дыра медленно пожирает своего соседа.

Читайте также: Получена новая фотография черной дыры. Что в ней особенного?

Газ от звезды-компаньона может притягиваться к черной дыре, которая затем закручивается по спирали вокруг черной дыры. Этот диск (называемый аккреционным диском) становится очень, очень горячим, настолько горячим, что испускает рентгеновские лучи. Мы можем видеть эти рентгеновские лучи, даже если не можем видеть саму черную дыру.

Первый в истории снимок горизонта событий черной дыры.

Но не только черные дыры звездной массы имеют аккреционные диски. У сверхмассивных черных дыр, что расположены в центре галактик, он тоже есть. Их аккреционные диски состоят из межзвездного газа, который в изобилии содержится в ядрах галактик. Аккреционные диски странные, что неудивительно, учитывая, что они существуют в экстремальных условиях. Например, когда внутренняя часть аккреционного диска взрывается, мы наблюдаем струи частиц высокой энергии, которые вылетают из черной дыры с противоположных сторон, исходящие из области горизонта событий. Там эти струи подпитываются сильными магнитными полями.

Стив Аллен из Кембриджского Института астрономии считает, что именно струи вызывают звуковые волны, исходящие от черной дыры. Интересно и то, что излучаемые рентгеновские лучи на самом деле соответствуют циклу звуковых волн.

«По сути звуковые волны вызывают яркие и темные излучения рентгеновских лучей, движущихся кольцами от центра черной дыры, как рябь на поверхности бассейна,» объясняют астрономы.

Это интересно: Как умирают черные дыры?

Небесные заклинания

После того, как исследователи из лабораторий LIGO и VIRGO доказали существование гравитационных волн, которое возникло в результате слияния двух черных дыр, ученые преобразовали их в звук, оцифровав на новом альбоме из десяти треков под названием «Небесные заклинания».

Как объясняют исследователи, звук не может перемещаться в космическом вакууме, но электромагнитные и гравитационные волны могут. Профессор Австралийского Национального Универсетита доктор Ким Кунио, Найджел Мередит из Британской Антарктической службы и британский музыкант Диана Скарборо превратили аудиоданные, собранные Британской Антарктической службой, исследователями из Университета Айовы, обсерватории Джодрелл Бэнк, Европейского космического агентствф (ESA), NASA и консорциумом LIGO, в звук.

«На протяжении всего альбома небесные звуки затенены жутким хоровым пением; эхо-всплески сочетаются с отчаянно нарастающим фортепианным арпеджио; низкочастотные записи Сатурна, Юпитера и межзвездного пространства перемежаются дугообразными скрипками», пишет The Guardian.

Вы услышите, как зонд NASA «Вояджер-1» покидает нашу солнечную систему, а также первую запись атмосферы Марса (записана на пленку в феврале этого года). «Cataclysm», заключительный трек альбома, содержит «чириканье» гравитационных волн, которое было испущено, когда две черные дыры столкнулись на расстоянии 1,3 миллиарда световых лет от Земли.

Обложка альбома «Небесные заклинания»

Интересуетесь космосом и хотите всегда быть в курсе последних научных открытий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

Первые несколько треков начинаются на Земле и включают звук пузырьков сжатого воздуха, вырывающихся из ледяного ядра каменного века из Антарктиды, а также хлопки, вызванные активностью молнии.

Альбом в целом должен стать «музыкальным коконом, переносящим нас с Земли в эту новую пустыню, даря слушателям время для размышлений о чудесах и тайнах Вселенной, а также размышлений над нашем месте в ней и о том, одиноки ли мы в ее необъятности», говорится в описании альбома.

Послушать все треки «Небесных заклинаний» онлайн можно здесь. «Искусство играет важную роль в том, чтобы действительно поддерживать науку и показывать, чего наука может достичь для всех нас всего того, что мы считаем само собой разумеющимся», говорит профессор Кунио. «Искусство может придать смысл этой невероятной работе, которую выполняют ученые». Согласны?

Подробнее..

Гайд по теории Мультивселенной существуют ли другие миры?

28.08.2021 00:16:18 | Автор: admin

Наш мир намного больше и сложнее, чем мы можем себе представить. Но шанс разгадать фундаментальные тайны Вселенной у нас есть.

Физическая реальность может быть гораздо более обширной, чем просто участок пространства времени, который мы называем Вселенной. Наша космическая среда может быть сконструирована в невероятных масштабах, при этом наши астрономические инструменты невероятно ограничены. Мы, подобно муравьям, не знаем о том, насколько огромен мир вне муравейника. Так что некоторые физики-теоретики всерьез рассматривают теорию Мультивселенной, согласно которой наш мир лишь один из многих. Более того, применяя квантовую теорию к Вселенной, мы вынуждены признать, что она существует одновременно во многих состояниях. Иными словами, допустив применение квантовых флуктуаций к Вселенной, мы практически вынуждены признать существование параллельных миров. Интересно и то, что сочетание теории струн и «вечного» варианта инфляционной космологии (речь об инфляционной модели Вселенной) обеспечивает естественную основу для так называемой «ландшафтной Мультивселенной».

Теория Мультивселенной: Инфляция

Начнем с того, что концепция мультивселенной возникает сразу в нескольких областях физики (и философии), но наиболее ярким примером является теория инфляции, которая описывает гипотетическое событие, которое произошло, когда наша Вселенная была очень молодой менее секунды от роду. По данным NASA, за невероятно короткий промежуток времени Вселенная пережила период быстрого расширения, «раздуваясь», становясь все больше и больше.

Считается, что инфляция нашей Вселенной закончилась около 14 миллиардов лет назад. Однако инфляция не заканчивается везде одновременно. Исследователи считают, что, возможно, по мере того, как инфляция заканчивается в одном регионе, она продолжается в других.

Таким образом, в то время как инфляция закончилась в нашей Вселенной, могли существовать другие, гораздо более отдаленные регионы, где инфляция продолжалась и продолжается прямо сейчас. Более того, отдельные вселенные, как пишет LiveScience, могут «отщипывать» более крупные раздувающиеся, расширяющиеся вселенные, создавая бесконечное море вечной инфляции, заполненное многочисленными индивидуальными вселенными.

Инфляционная модель Вселенной.

В этом сценарии вечной инфляции каждая вселенная возникла бы со своими собственными законами физики, своей собственной коллекцией частиц, своим собственным расположением сил и своими собственными значениями фундаментальных констант, считают исследователи.

Это может объяснить, почему наша Вселенная обладает теми свойствами, какими обладает и в особенности теми, которые трудно объяснить с помощью таких концепций как темная материя или космологическая постоянная. «Если бы существовала мультивселенная, то у нас были бы случайные космологические константы в разных вселенных, и это просто совпадение, что та, которая есть у нас в нашей Вселенной, принимает значение, которое мы наблюдаем», считает Дэн Хелинг, космолог из Университета Аризоны и эксперт в области теории Мультивселенной.

Больше по теме: Почему физики считают, что мы живем в Мультивселенной?

Теория Мультивселенной: Наблюдения и доказательства

Интересно, что еще одним свидетельством существования мультверса являются наблюдения в нашей Вселенной должно было произойти так много всего, что существование жизни кажется невероятным. И если бы существовала только одна Вселенная, в ней, скорее всего, не должно было бы быть жизни. Но в мультивселенной вероятность существования жизни намного выше. Но эту теорию вряд ли можно назвать убедительной, поэтому большинство ученых по-прежнему скептически относятся к идее мультивселенной.

И тем не менее многие пытались найти более физические, убедительные доказательства ее существования. Например, если соседняя вселенная давным-давно оказалась рядом с нашей, она, возможно, столкнулась с ней, оставив заметный отпечаток.

Реликтовое излучение может хранить «отпечатки» других вселенных.

Этот отпечаток может быть в форме искажений космического микроволнового фонового излучения или реликтового излучения (света, оставшегося с тех времен, когда Вселенная была в миллион раз меньше, чем сегодня) или в странных свойствах галактик в направлении столкновения, согласно работе, опубликованной исследователями Университетского колледжа Лондона.

Вам будет интересно: Если существуют другие вселенные, то сталкиваются ли они с нашей?

Некоторые астрофизики пошли еще дальше, ища особые виды черных дыр, которые могли бы быть артефактами частей нашей Вселенной, отделившимися в свою собственную вселенную с помощью процесса под названием квантовое туннелирование.

Если бы некоторые области нашей Вселенной разделились таким образом, то оставили бы после себя «пузыри» в нашей Вселенной, которые превратились бы в эти уникальные черные дыры, которые, по словам исследователей, «могут существовать и сегодня».

«Потенциальное обнаружение этих черных дыр может затем указать на существование мультивселенной», считают физики-теоретики. Однако все эти типы поисков пока ни к чему не привели, так что на сегодняшний день Мультивселенная остается гипотетической.

Теория Мультивселенной: Реликтовое излучение

В 1964 году физики Арно Пензиас и Роберт Уилсон работали в лаборатории Bell в Холмделе, штат Нью-Джерси, создавая сверхчувствительные микроволновые приемники для радиоастрономических наблюдений. Но что бы они делали, избавить приемники от фонового радиошума, который, как ни странно, казалось, шел со всех сторон одновременно, у них не получалось.

Пензиас связался с физиком из Принстонского университета Робертом Дике, который предположил, что радиошум может быть космическим микроволновым фоновым излучением (CMB), которое является первичным микроволновым излучением, заполняющим Вселенную.

Если другие вселенные и правда существуют, они могли оставить «отпечаток» в реликтовом излучении, равномерно заполняющем Вселенную.

Это история открытия реликтового излучения, простая и элегантная. За свое открытие Пензиас и Уилсон получили Нобелевскую премию по физике в 1978 году, и не без оснований. Их работа открыла новую эру космологии, позволив ученым изучать и понимать Вселенную как никогда прежде.

Еще больше интересных статей о последних открытиях в области астрофизики и космологии читайте на нашем канале в Яндекс.Дзен. Там регулярно выходят статьи, которых нет на сайте!

Интересно, что работа физиков также привела к одному из самых удивительных открытий в новейшей истории: уникальные особенности реликтового излучения могут стать первым прямым доказательством того, что бесконечное множество миров за пределами известной Вселенной действительно существует. Однако, чтобы правильно понять это необычное утверждение, необходимо совершить путешествие к началу времен.

Теория Мультивселенной: Большой взрыв

Согласно общепринятой теории происхождения Вселенной, в течение первых нескольких сотен тысяч лет после Большого взрыва наша Вселенная была заполнена невероятно горячей плазмой, состоящей из ядер, электронов и фотонов, которые рассеивали свет.

Примерно к 380 000 годам продолжающееся расширение нашей Вселенной привело к ее охлаждению до температуры ниже 3000 градусов Кельвина, что позволило электронам объединяться с ядрами с образованием нейтральных атомов, а поглощение свободных электронов позволило свету освещать темноту.

Доказательством этого в виде ранее упомянутого реликтового излучения является то, что обнаружили Пензиас и Уилсон. Их открытие, в конечном итоге, помогло установлению теории Большого Взрыва.

У Вселенной, как мы знаем сегодня, было начало.

Читайте также: Что произошло в первые микросекунды после Большого взрыва?

На протяжении многих эпох продолжающееся расширение охлаждало нашу Вселенную до температуры всего около 2,7К, но эта температура неравномерна. Различия в температуре возникают из-за того, что материя неравномерно распределена по всей Вселенной. Считается, что это вызвано крошечными флуктуациями квантовой плотности, которые произошли сразу после Большого взрыва.

В 2017 году, исследователи из Даремского университета Великобритании опубликовали работу, результаты которой предполагают, что «отпечатки» в реликтовом излучении (так называемые холодные пятна) могут быть свидетельством существования других миров. Авторы предположили, что пятна в микроволновом фоновом излучении появились в результате столкновения между нашей вселенной и другой.

В целом, пятна в реликтовом излучении можно считать первым доказательством существования мультивселенной миллиардов других вселенных, похожих на нашу собственную, пишут исследователи.

Теория Мультивселенной: Темная материя

Еще одним доказательством в копилку теории Мультивселенной добавляет новое, крайне интересное исследование. Его результаты, как пишет Vice, предполагают, что черные дыры, образованные из свернутых вселенных, порождают темную материю, а наша собственная Вселенная может выглядеть как черная дыра для посторонних.

Одни из самых таинственных объектов во Вселенной, черные дыры, могут являться источником темной материи.

Чтобы всегда быть в курсе последних новостей из мира науки и высоких технологий, подписывайтесь на наш новостной канал в Telegram. Так вы точно не пропустите ничего интересного!

Отмечу, что темная материя невидимая субстанция, на долю которой приходится большая часть массы Вселенной хотя и не излучает обнаруживаемый свет, все же существует, так как оказывает гравитационное воздействие на скопления галактик и другие излучающие объекты в космосе.

Для объяснения темной материи был предложен ошеломляющий спектр гипотез, но теперь ученые предположили, что первичные черные дыры гипотетические объекты, которые относятся к периоду зарождения Вселенной, «являются жизнеспособным кандидатом на темную материю». К такому выводу пришла международная команда исследователей из США, Японии и Тайваня, в работе, опубликованной в научном журнале Physical Review Letters в январе этого года.

Подробнее о том, могут ли первичные черные дыры являться источником темной материи и почему представляют такой интерес для ученых, я рассказывала в этой статье, рекомендую к прочтению!

И все же, на данный момент все эти концепции являются умозрительными, хотя физики ожидают, что новые способы наблюдения с помощью сложных телескопов в ближайшие годы помогут ответить на многие вопросы.

Теория Мультивселенной: И снова инфляция

Знаменитый британский физик-теоретик Стивен Хокинг умер 14 марта 2018 года, проведя десятилетия прикованным к инвалидному креслу и зависящим от синтезатора речи из-за страданий, вызванных боковым амиотрофическом склерозом. Последняя исследовательская работа ученая, опубликованная всего за 10 дней до его смерти, была написана вместе с профессором теоретической физики Томасом Хертогом и касалась мультивселенной.

Кто знает, в каком из бесчисленного множества миров живем мы?

В статье, озаглавленной «Плавный выход из вечной инфляции?» Хокинг и Хертог предположили, что быстрое расширение пространства-времени после Большого взрыва могло происходить неоднократно, создавая множество вселенных.

Их работа, по сути, является расширением Теории инфляции, предполагающей, что до Большого взрыва Вселенная была наполнена энергией, которая была частью самого пространства, и эта энергия заставляла пространство расширяться с экспоненциальной скоростью. Именно эта энергия породила Большой взрыв и именно об этом мы с вами говорили ранее.

Это интересно: Узнаем ли мы когда-нибудь как появилась Вселенная?

Однако, поскольку инфляция, как и все остальное, носит квантовый характер, это означает, что во Вселенной должны быть области пространства, в которых инфляция заканчивается и начинается Большой взрыв. Вот только эти области никогда не смогут столкнуться друг с другом, поскольку они разделены областями раздувающегося пространства.

Теория Мультивселенной: Критика и выводы

В завершении следует сказать, что когда кто-то говорит о теории мультивселенной, это может звучать и дерзко и смиренно одновременно. Но у многих физиков совершенно иная реакция: по их мнению, идея мультивселенной ненаучна и, возможно, даже «опасна» тем, что может привести к неверно направленным научным усилиям.

Так, Пол Стейнхардт, профессор естественных наук в Принстонском университете, назвал теорию Мультивселенной «Теорией чего угодно», так как она совместима с произвольными наблюдениями и, следовательно, не имеет какого-либо эмпирического уклона.

Сегодня современная наука пока не может ни доказать, ни опровергнуть существование Мультивселенной.

Так или иначе, несмотря на критику теории множественности миров, данные научных исследований (о некоторых из которых рассказано в этой статье) позволяют выдвигать даже такие, кажущиеся на первый взгляд, безумными теории. В конце концов, возвращаясь к аналогии с муравейником, что мы знаем о мире, в котором живем?

А как вы думаете, существует ли Мультивселенная или усилия физиков направлены не в то русло? Ответ будем ждать здесь, а также в комментариях к этой статье!

Подробнее..

Ученые сгенерировали виртуальную вселенную. И ее можно загрузить

15.09.2021 00:09:07 | Автор: admin

Исследователи создали целую виртуальную Вселенную, и ее можно скачать

Астрономия, будучи наукой, изучающей Вселенную, способна поразить воображение. А пока вы в этом, возможно, сомневаетесь, наша планета вращается вокруг своей оси и несет нас сквозь космос со скоростью почти 1700 км/ч относительно кого-то на экваторе. Наша галактика Млечный Путь, в свою очередь, вместе с соседней галактикой Андромеды и несколькими другими галактиками объединены в так называемую Местную Группу, каждая галактика в которой движется в общем гравитационном поле. Но за пределами Местной Группы лежит далекий и бесконечный космос. Так, на расстоянии 22 миллиона световых лет можно обнаружить галактику NGC 3621, которая расположилась в южном созвездии Гидра. И чем дальше мы будем удаляться от дома, тем больше галактик мы увидим. Вряд ли человеческое воображение способно справиться с восприятием бесконечной Вселенной, на просторах которой творится бог весть что. И все же, у нас есть инструменты, позволяющемся хоть как-то разрешить эту мысленную проблему. Недавно международная команда исследователей создала самую большую и реалистичную виртуальную вселенную на сегодняшний день под названием Учуу (что по-японски означает космическое пространство). И да, ее можно скачать.

Компьютеры в астрономии

Сегодня исследования в области астрономии и астрофизики не обходятся без мощнейших компьютеров. Они помогают ученым в наблюдениях и обработке данных, составлении каталогов и работе с документами. Роботизированные телескопы и радиотелескопы позволяют астрономам отслеживать движение тысяч звезд. А использование численных методов позволяет добиваться по-настоящему удивительных результатов при обработке данных.

Как пишет астрофизик Сергей Попов, некоторые современные астрономические проекты относятся к т.н. Big data science. Работа инструмента начинает во многом определяется возможностью работы с получаемой информацией.

Астрономия особая наука. В ней эксперимент заменяют наблюдения. Поэтому особую роль приобретает моделирование, пишет Попов.

Для астрофизического моделирования применяются мощнейшие суперкомпьютеры, т.к. задачи, стоящие перед астрофизиками, очень сложны

Более того, работу современного астронома невозможно представить без компьютера. С их помощью исследователи могут управлять инструментами, а затем, применяя мощные современные методы анализа, обрабатывать полученные данные. Так что от телескопа до компьютера один шаг.

Больше по теме: Астрономы нанесли на карту Вселенной три миллиона новых галактик

Компьютерные модели Вселенной

Попытки сгенерировать компьютерную модель Вселенной, которая рассказывала бы ее эволюцию за более чем 13 миллиардов лет (то есть с момента Большого взрыва) принимались неоднократно. Так, еще в 2014 году в ходе работы, опубликованной в журнале Nature, исследователи провели численное моделирование формирования космической структуры, воспроизведя как крупномасштабные, так и мелкомасштабные особенности репрезентативного объема Вселенной с начала ее истории до наших дней.

Работа отражает как крупномасштабное распределение барионной материи во Вселенной, так и изменение с течением времени его свойств в конкретных галактических системах. Напомним, что барионной материей ученые называют материю, состоящую из барионов (нейтронов, протонов) и электронов.

А ври на изображении ниже можно увидеть результат работы исследователей из Нью-йоркского института Flatiron и Массачусетского технологического института (MIT). Им удалось разработать и запрограммировать новую модель моделирования Вселенной, получившую название Illustris: Следующее поколение, или Illustris TNG.

Перед вами компьютерная модель Вселенной, которая может похвастаться невиданными ранее уровнями детализации о силах, действующих во Вселенной.

До 2021 года эта модель являлась самой продвинутой симуляцией Вселенной в своем роде. Детализация и масштаб моделирования позволяют изучать, как формируются, развиваются и растут галактики в тандеме с их активностью по звездообразованию.

Хотите всегда быть в курсе последних новостей из мира науки и высоких технологий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

Когда мы наблюдаем галактики с помощью телескопа, мы можем измерить только определенные величины, пишут исследователи он. С помощью моделирования мы можем отслеживать все свойства всех этих галактик. И не только то, как выглядит галактика сейчас, но и всю историю ее формирования.

Отображение того, как развиваются галактики в моделировании, дает представление о том, какой могла быть наша собственная галактика Млечный Путь, когда сформировалась Земля, и как наша галактика может измениться в будущем.

Uchuu новая модель Вселенной

Недавно международная команда исследователей из Японии, Испании, США, Аргентины, Австралии, Чили, Франции и Италии опубликовала результаты своей по-настоящему прорывной работы. Теперь вы сами (при наличии свободного жесткого диска) можете держать одну из этих симуляций в своем компьютере. Симуляция, получившая название Uchuu является самой подробной симуляцией Вселеной из когда-либо созданных.

Учуу содержит 2,1 триллиона "частиц" в пространстве диаметром 9,6 миллиарда световых лет. Имитационное моделирование демонстрирует эволюцию Вселенной на протяжении более 13 миллиардов лет, но не фокусируется на образовании звезд и планет, а вместо этого рассматривает поведение темной материи в расширяющейся Вселенной.

Как сообщает портал Science Alert, моделирование было создано с использованием суперкомпьютера ATERUI II, который посвящен астрономическим проектам. Суперкомпьютер, расположенный в Иватэ, Япония, имеет максимальную производительность более 3 Пфлопс, но даже при всей этой мощности потребовался целый год, чтобы просмотреть все данные и создать симуляцию.

Симуляция Учуу, самая подробная симуляция Вселенной на сегодняшний день. Моделирование: Томоаки Исияма; Визуализация: Хиротака Накаяма; Проект 4D2U, NAOJ

Для производства Uchuu мы использовали … все 40 200 процессоров (процессорных ядер), доступных исключительно в течение 48 часов каждый месяц, сказал Томоаки Исияма, доцент Университета Тиба, который разработал код для проекта. Было израсходовано двадцать миллионов суперкомпьютерных часов, и было сгенерировано 3 петабайта данных, что эквивалентно 894 784 853 снимкам с 12-мегапиксельного мобильного телефона.

Моделирование рассматривает ореолы темной материи, которые представляют собой структуры огромного масштаба, которые могли бы рассказать нам о формировании галактик и ранней Вселенной. Крупномасштабный характер моделирования делает его ценным инструментом для изучения того, как Вселенная развивалась с течением времени, поскольку он показывает очень отдаленные регионы, которые представляют собой ранние этапы жизни Вселенной.

«Учуу похож на машину времени», рассказала в интервью News18 Джулия Эреза, аспирант Института астрофизики Андалусии в Испании, которая использует Учуу.

Отправиться в космическое путешествие сегодня можно не выходя из дома.

«Мы можем двигаться вперед, назад и останавливаться во времени, мы можем «увеличить» одну галактику или «уменьшить» ее, чтобы визуализировать целое скопление, мы можем видеть, что на самом деле происходит в каждый момент и в каждом месте Вселенной с ее самых ранних дней до настоящего времени, что является важным инструментом для изучения Космоса,» отмечает Эреза. Более того, никогда прежде у человечества не было подобных инструментов.

Так что если вы хотите самостоятельно исследовать новую виртуальную модель Вселенной, то вперед: команда сделала всю симуляцию доступной для бесплатного скачивания. Хотя вынуждены предупредить даже в сжатом виде симуляция занимает 100 терабайт, поэтому вам понадобится немало свободного места на жестком диске.

Вам будет интересно: Как связаны привидения и компьютерная симуляция нашей Вселенной?

Чтобы загрузить симуляцию и узнать больше о взаимодействии с ней, вы можете перейти на веб-сайт Uchuu simulation и связанную с ним страницу на GitHub. Группа также планирует выпустить больше данных в будущем, включая каталоги виртуальных галактик и карты гравитационного линзирования. Работа опубликована в журнале Monthly Notices of the Royal Astronomical Society.

Учуу фокусируется на крупномасштабной структуре Вселенной: ореолах темной материи, контролирующих не только формирование галактик, но и судьбу всей Вселенной.

Разработчики Uchuu надеются, что модель поможет астрономам научиться интерпретировать исследования галактик с использованием Big Data, которые ожидаются в ближайшие годы с помощью таких объектов, как телескоп Subaru и космическая миссия ЕКА Euklede.

Вам будет интересно: Суперкомпьютер обратил вспять космические часы

Недавно появился новый тип астрономии, называемый «имитационной астрономией», который использует компьютеры. Используя вычислительную мощность суперкомпьютеров, мы теперь можем численно решать уравнения, которые не могут быть решены аналитически. ATERUI II стремится изобразить более реалистичную Вселенную с помощью моделирования, используя ее высокую скорость вычислений, — пишут авторы научной работы.

Ну что, добро пожаловать в новый мир удивительных астрономических открытий и высоких технологий. Будете устанавливать Uchuu на свой компьютер? Ответ будем ждать здесь, а также в комментариях к этой статье!

Подробнее..

Категории

Последние комментарии

© 2006-2021, umnikizdes.ru