Русский
Русский
English
Статистика
Реклама

Большой адронный коллайдер

Ученые из ЦЕРН стоят на пороге открытия новой физики

28.03.2021 18:14:18 | Автор: admin

Чего только не обнаружишь в Большом адронном коллайдере.

В 2008 году в Европе состоялся запуск гигантского ускорителя заряженных частиц Большого адронного коллайдера (БАК). Тогда казалось, что мир словно сошел с ума. Но не от радости за достижения современной науки, а от ужаса перед неизведанным слухи о том, что запуск БАК приведет к созданию черной дыры и неизбежному концу света распространялись с молниеносной скоростью. И сколько бы физики не объясняли, что коллайдер разгоняет элементарные частицы до околосветовых скоростей и сталкивает их друг с другом и этот процесс не может привести к апокалипсису, истинно верующие до сих пор глаголят, что коллайдер есть начало конца. Это может показаться удивительным, но в чем-то они, вероятно, оказались правы. Новая работа ученых из Европейской организации ядерных исследований (ЦЕРН) предрекает конец нашим представлениям о физике: полученные результаты указывают на новую силу природы за пределами Стандартной модели, которую ученые не понимают.

Для чего нужен БАК?

Недавно мировые СМИ сообщили о новом удивительном открытии ученых из ЦЕРН, которые зафиксировали необычные данные, способные указать на существование совершенно новой силы природы. Секрет кроется в неуловимой и нестабильной частице под названием B-мезон.

В-мезоны неуловимые и нестабильные парные кварки, которые движутся вместе и быстро распадаются.

Но прежде чем погрузиться в подробности увлекательного эксперимента, напомним, что ученые из ЦЕРН ведут работу по разным направлениям, включая поиск антиматерии вещества с потенциально неисчерпаемым источником энергии. В 2012 году состоялось открытие «Бозона Хиггса» частицы, которая фактически связывает электроны, протоны и нейтроны. В перспективе ее открытие может привести к созданию новых систем связи и квантовых компьютеров. Работа над ними, кстати, активно ведется, о чем рассказывал мой коллега Рамис Ганиев в этой статье.

В длину гигантский ускоритель частиц достигает 100 километров, а его диаметр превышает 25 км.

Говоря об экспериментах БАК можно сказать, что физики «гоняют» элементарные частицы и сталкивают их друг с другом в попытке обнаружить новые и ранее неизученные свойства протонов, нейтронов и электронов. А в ближайшие полтора года, как отмечает The Guardian, исследователям предстоит окончательно доказать или опровергнуть существование «новой физики».

Хотите всегда быть последних новостей из мира популярной науки и высоких технологий? Подписывайтесь на наш канал в Google News чтобы не пропустить ничего интересного!

Крупный проект БАК

Как говорится в пресс-релизе исследования на сайте ЦЕРН, во время пробегов частиц на БАКе физики тщательно изучали редчайшие распады парных кварков (B-мезонов). Оказалось, что В-мезоны распадаются на разные количества электронов и мюонов, что противоречит предсказаниям Стандартной модели. Напомним, что мюон (в Стандартной модели физики) является неустойчивой элементарной частицей с отрицательным электрическим зарядом.

Читайте также: Большой Адронный Коллайдер будет обогревать дома

Необходимо также отметить, что обнаруженные аномалии во время распада B-мезонов сегодня являются одним из основных направлений исследований крупного проекта БАК экспериментальной группы LHCb.

Стандартная модель физики элементарных частиц предсказывает, что распады с участием различных лептонов, таких как в исследовании LHCb, должны происходить с одинаковой вероятностью. Лептонами физики называют электрон, мюон и таон, которые должны взаимодействовать с окружающим миром одинаково, с поправкой на различия в массе. Однако сравнив, как часто происходят подобные распады, участники LHCb обнаружили, что пары мюонов возникали значительно чаще, чем электроны и позитроны. Но чем можно объяснить такое несоответствие?

Пятая сила природы

Пока что ученые не уверены, но им понадобится новая сила природы, чтобы объяснить подобные аномалии. Однако отсутствие четкого объяснения порождает волнение. В ЦЕРН говорят, что экспериментальная группа LHCb продолжит изучение этой непредсказуемой разницы. Так, уже в следующем году физики обновят детектор команды и начнут запускать новые версии эксперимента.

С большим количеством результатов, которые покажут наличие той же аномалии, команда сможет подтвердить или опровергнуть существование нового вида физики. Как отметил в интервью ТАСС.Наука один из участников эксперимента LHCb, главный научный сотрудник НИТУ «МИСиС» Андрей Голутвин, говорить об открытии пока рано, так как ученые получили лишь первые указания на него.

Результаты исследования ученых из ЦЕРН указывают на новую силу природы, которую ученые не понимают.

«Нужно ждать подтверждения на других установках, в первую очередь, на японской фабрике B-мезонов Belle, а также в последующих опытах на LHCb и других экспериментах БАК. При этом, на мой взгляд, уже сейчас можно сказать, что это еще более важный и интересный результат, чем открытие бозона Хиггса», пояснил Голутвин.

Изучение частиц и сил, управляющих их поведением, может привести к большим изменениям в стратегии физики элементарных частиц, в том числе и в том, как будут проводиться новые эксперименты и строиться последующие ускорители высоких энергий.

Подробнее..

Антиматерию охладили почти до абсолютного нуля лазерным лучом

12.04.2021 20:12:38 | Автор: admin

Впервые физики использовали лазерный свет (фиолетовый) для охлаждения антиматерии. Серые линии показывают движение атома антиводорода до охлаждения; синие-после.

Пока мы с вами заняты повседневными делами, ученые в ЦЕРН охлаждают почти до абсолютного нуля антиматерию и вообще-то стоят на пороге открытия Новой физики. И так как нет на свете ничего интереснее чем тайны мироздания, предлагаю ненадолго отложить дела и погрузиться в изумительный мир физики. Начнем с того, что теорию антиматерии впервые предложил английский физик-теоретик, один из создателей квантовой теории Поль Дирак в 1928 году. Всего четыре года спустя его теория получила подтверждение. Сегодня мы знаем, что антиматерией ученые называют эфирную противоположность материи. Ее частицы идентичны своим материальным двойникам, за исключением их физических свойств там, где электрон имеет отрицательный заряд, его антиматериальный двойник, позитрон, имеет положительный. Причина, по которой мы не сталкиваемся с антиматерией так часто, как с обычной материей, заключается в том, что они аннигилируют друг с другом при контакте, что чрезвычайно затрудняет хранение и изучение антиматерии в повседневной жизни.

Материя и антиматерия

Теория, которая описывает большую часть взаимодействий всех известных науке элементарных частиц называется Стандартной моделью. Если она верна, то все физические свойства и химические элементы частиц материи и антиматерии (за исключением заряда), должны были быть одинаковыми космологи полагают, что в первые секунды после Большого взрыва материи и антиматерии во Вселенной было примерно поровну. Это, однако, противоречит реальности и ученые уже много десятилетий спорят о том, почему в наблюдаемой Вселенной антиматерии нет.

Сегодня многие ученые считают, что ответ необходимо искать в малейших различиях в поведении, свойствах и устройстве частиц материи и антиматерии. Такие различия, например, могут существовать в массах протонов и антипротонов, но на сегодняшний день доказательств этой теории нет. Причина, в частности, кроется в отсутствии разнообразных инструментов для сложных манипуляций с частицами антиматерии.

Читайте также: Крах Стандартной модели колебание крошечной частицы нарушает известные законы физики

Недавно физики из Европейской организации по ядерным исследованиям (ЦЕРН) в Швейцарии в рамках проекта ALPHA-2 попробовали решить проблему антиматерии с помощью специальной магнитной ловушки для позитронов и антипротонов, благодаря которым образуются одиночные атомы антиводорода.

Эксперимент ALPHA в ЦЕРН.

Антиводород простейший стабильный атом, который состоит только из частиц антиматерии, а именно антипротона и антиэлектрона (позитрона). В 1995 году 11 атомов антиводорода были получены в результате реакций в ускорителе частиц в ЦЕРН. Каждый атом существовал всего несколько десятков наносекунд.

Необходимо отметить, что с помощью так называемой магнитной ловушки, ученые уже не раз уточняли массу одиночных антипротонов и атомов антиводорода, а также измеряли их взаимодействие с гравитацией.

Как охладить антиматерию?

Разгоняя обычные частицы материи до скорости, близкой к скорости света, а затем разбивая их вместе, команда исследователей из Канады смогла создать античастицы. Затем ученые управляли и замедляли ускоряющиеся античастицы, используя чрезвычайно сильные магнитные и электрические поля. В конце концов, им удалось заключить облака позитронов и антипротонов в магнитное поле, пока те не объединились в антиводород. Когда это произошло, физики охладили антиводородное облако, взорвав его лазером. Но как вообще можно охладить что-то лазером?

Пристальное внимание к лазерам, которые используются в ALPHA-2 для измерения позитронов, антиводорода и свойств антипротонов, позволило ученым предположить, что их можно было бы использовать чтобы значительно «затормозить» движение частиц, тем самым охладив антиматерию.

В ходе исследования, результаты которого опубликованы в журнале Nature, физики подобрали для лазеров особую частоту работы, при которой пучки порождаемых ими частиц света активно взаимодействовали только с теми атомами антиводорода, что двигались в сторону детекторов ускорительной установки. Это позволило ученым быстро получить разреженное облако из атомов материи и антиматерии, которые двигались очень медленно и практически не сталкивались друг с другом.

Хотите всегда быть в курсе последних новостей из мира науки и популярных технологий? Подписывайтесь на наш канал в Google News, чтобы не пропустить ничего интересного!

Ведущий автор исследования Макото Фудзивара стоит перед экспериментальным аппаратом ALPHA в ЦЕРН в Швейцарии.

Облучая атомы антиводорода таким образом, ученым в конечном итоге удалось охладить их на одну двадцатую градуса выше абсолютного нуля, что сделало антиматерию более чем в 3000 раз холоднее самой холодной зарегистрированной температуры в Антарктике. Также физики проследили за частиц антиводорода с фотонами (частицами света). Как отмечают авторы исследования, первое в истории охлаждение антиматерии увеличивает точность подобных измерений как минимум в четыре раза.

Это интересно: Физики переосмысли строение Вселенной. Темная энергия больше не нужна?

Между тем, новые исследования в этой области должны помочь ученым раскрыть некоторые из самых больших секретов Вселенной, например, как на антиматерию влияет гравитация и реальны ли некоторые из фундаментальных теоретических симметрий, предложенных физикой.»В будущем мы хотим получить один антиатом в вакууме и разделить его на квантовую суперпозицию, чтобы он создал интерференционную картину с самим собой», объясняют авторы исследования в интервью Live Science.

Все потому, что квантовая суперпозиция позволяет очень маленьким частицам, таким как антиводород, появляться более чем в одном месте одновременно. Поскольку квантовые частицы ведут себя и как частица, и как волна, они могут интерферировать друг с другом, создавая картину пиков и впадин, подобно тому, как волны из моря движутся через буруны. Одним словом, впереди еще очень много работы, но будущее определенно точно принесет с собой серьезные изменения в нашем понимании окружающей Вселенной.

Подробнее..

Категории

Последние комментарии

© 2006-2021, umnikizdes.ru