Русский
Русский
English
Статистика
Реклама

Квантовые компьютеры

Что происходит квантовые компьютеры

08.01.2022 00:08:58 | Автор: admin

Квантовые компьютеры технологии будущего

Нам с вами довелось жить в удивительное время. Не самое спокойное, конечно, но посмотрите, чего добилась наука мы не просто дробим материю на атомы, мы создаем квантовые технологии и даже умеем ими пользоваться. Взять, к примеру, квантовые компьютеры. Эти машины выполняют вычисления на основе вероятности состояния объекта до его измерения — вместо 1 или 0 секунд. Это означает, что они могут обрабатывать экспоненциально больше данных по сравнению с классическими компьютерами, которые выполняют простые логические задачи и операции. Подобные технологии разрабатываются в течение десятилетий и по крайней мере две программы, написанные для квантового компьютера, датированы 90-ми гг.ХХ века. Одна из них раскладывает большие числа на простые множители и тем самым позволяет взломать нынешнее компьютерное шифрование. Вторая программа может осуществлять поиски, требующие квадратный корень от времени, которое затрачивается на них обычными компьютерами.

Квантовые технологии сложная область физики, которая исследует поведение субатомных частиц частиц, которые меньше атомов, основных строительных блоков всей материи во Вселенной.

Поговорим о кубитах

Одной из основных областей, представляющих интерес в рамках квантовой технологии, являются квантовые вычисления. В отличие от классического компьютера, который выполняет вычисления по одному за раз, квантовый компьютер может выполнять множество вычислений одновременно.

Основной единицей информации в квантовых вычислениях является «бит», который представляет одно из двух двоичных значений либо ноль, либо единицу.

По сути, кубит это гибрид слов «квантовый» и «бит». В современных компьютерах и смартфонах биты составляют наименьшую единицу хранения информации. Каждый из них при этом либо содержит значение 0, либо значение один. Но в кубите битом является квантовая частица. И это меняет все.

Квантовый компьютер работает на вероятностном принципе.

Кубит обладает гибкостью для представления либо нуля, либо одного, либо обоих одновременно. Эта способность объекта существовать более чем в одной форме одновременно называется суперпозицией. Однако когда несколько кубитов в компьютере взаимодействуют друг с другом, ситуация усложняется, так как возникает концепция запутанности: множество частиц в квантовой системе связаны и влияют друг на друга.

Разработка квантовых компьютеров позволит добиться научного прорыва в области биологии, химии, медицины и транспорта.

Например, если один кубит представляет ноль, другой кубит, связанный с ним, примет значение единицы, и наоборот это делает измерение каждого кубита зависимым от другого. Поскольку базовые информационные блоки квантовых компьютеров могут представлять все возможности одновременно, теоретически они намного быстрее и мощнее обычных компьютеров, к которым мы привыкли.

Технологии будущего

Недавно физики из Китая запустили квантовый компьютер, которому, по их словам, потребовалась 1 миллисекунда для выполнения задачи, которая заняла бы у обычного компьютера 30 триллионов лет! Все потому, что в квантовых вычислениях операции используют квантовое состояние объекта для создания кубита.

Эти состояния представляют собой неопределенные свойства объекта до того, как они были обнаружены, такие как вращение электрона или поляризация фотона.

Вместо того, чтобы иметь четкое положение, неизмеренные квантовые состояния возникают в смешанной «суперпозиции». Эти суперпозиции могут быть связаны с суперпозициями других объектов, а значит их конечные результаты будут математически связаны, даже если мы еще не знаем, что это такое.

Квантовые компьютеры для вычислений используют такие свойства квантовых систем, как суперпозиция и запутанность.

Вам будет интересно: Может ли квантовая механика объяснить существование пространства-времени?

Как собрать квантовый компьютер?

Итак, для создания функционального квантового компьютера требуется удерживать объект в состоянии суперпозиции достаточно долго, чтобы выполнять на нем различные процессы. К сожалению, как только суперпозиция встречается с материалами, которые являются частью измеряемой системы, она теряет свое промежуточное состояние в так называемой декогеренции.

Выходит, эти устройства должны быть способны защищать квантовые состояния от декогеренции, в то же самое время делая их легко читаемыми.

Квантовые состояния суперпозиции и запутанности чрезвычайно хрупки, и без правильной температуры и условий окружающей среды они быстро теряют свои качества и ведут себя хаотично. На данный момент квантовые компьютеры очень чувствительны: тепло, электромагнитные поля и столкновения с молекулами воздуха могут привести к декогеренции и сбою системы.

Квантовые компьютеры сегодня очень чувствительны

В идеале, квантовые компьютеры должны защищать кубиты от внешних помех, либо физически изолируя их, сохраняя в прохладном состоянии, либо заряжая тщательно контролируемыми импульсами энергии. Дополнительные кубиты необходимы для исправления ошибок, которые проникают в систему.

Потребность в специализированном оборудовании является ключевой причиной того, что только страны, готовые инвестировать большие ресурсы, изучают квантовые вычисления. А так как наука стремительно развивается, рано или поздно физики своего добьются.

В работе 2020 года физики из Китая изложили три области применения квантовых технологий, которые пыталась разработать страна. Так, квантовые датчики могли бы обнаружить подводную лодку, скрывающуюся на глубине сотен метров под океаном, или направлять устройства, которые могли бы работать независимо в течение нескольких месяцев без сигнала GPS.

Технологии будущего уже здесь, осталось немного подождать

А еще квантовые вычисления могут помочь исследователям разрабатывать новые лекарства, моделируя более крупные и сложные молекулы намного быстрее. Нескольких сотен запутанных кубитов было бы достаточно, чтобы представить больше чисел, чем атомов во Вселенной!

Подробнее о новейших открытиях в области квантовой физики можно прочитать здесь.

А еще не забудьте подписаться на наш канал в Telegram, так вы точно не пропустите ничего интересного!

Подробнее..

Физика частиц и новейшие технологии что нас ждет в ближайшие 10 лет?

19.02.2022 00:06:58 | Автор: admin

Квантовые технологии стремительно развиваются

Квантовая теория родилась в первой половине XX века. Среди ее создателей были Нильс Бор, Альберт Эйнштейн, Макс Планк, Вернер Гейзенберг, Эрвин Шредингер и другие, не менее выдающиеся ученые. Создание Стандартной модели элементарных частиц ознаменовало собой революцию в понимании Вселенной. Именно квантовая теория подарила миру лазеры, МРТ, ускорители частиц, компьютеры, интернет и ядерное оружие. Но что дальше? Некоторые физики полагают, что в ближайшие пять лет будут созданы устройства, которые до недавнего времени описывались лишь на страницах научно-фантастических романов. Дело в том, что любой скачок в области квантовых вычислений увеличивает потенциал технологии, способной выполнять вычисления и моделирование, выходящие за рамки современных суперкомпьютеров. Иными словами, мир готовится к квантовому будущему. И если квантовые технологии действительно изменят вычисления в том виде, в каком мы их знаем, то какое будущее нас ждет?

Основные принципы квантовой теории

Итак, в отличие от классической физики, которая опирается на гравитацию и законы движения Ньютона, квантовые частицы действуют по своим собственным правилам. Например, такое понятие как суперпозиция указывает на способность квантовой системы находиться в нескольких состояниях одновременно.

И хотя звучит немного безумно и напоминает мысленный эксперимент кота Шредингера, частица действительно может находиться в нескольких состояниях сразу, но лишь до того момента, пока ее не измерят.

Эйнштейн называл квантовую запутанность сверхъестественной связью

Следующий принцип называется квантовой запутанностью. Наблюдать ее можно когда два атома связаны между собой, несмотря на то, что их разделяет огромное расстояние. Если свойства одного из атомов изменяются, его запутанный аналог тоже меняется, причем мгновенно. Запутанность присутствует даже тогда, когда атомы расположены на противоположных концах Вселенной.

Больше по теме: Тайны квантовой механики что такое квантовая запутанность?

Суперпозиция и запутанность являются основополагающими принципами квантовой теории. Эти квантовые системы нашли свое повседневное применение, и ученые, наконец, учатся управлять ими и использовать в собственных интересах.

Квантовые вычисления и технологии

Квантовая теория необходима для понимания ядерной структуры, составляющей ядро частицы протона и нейтрона которые сильно притягиваются друг к другу ядерными силами, а их столкновение высвобождает ядерную энергию.

Квантовые эффекты также лежат в основе полупроводников и транзисторов, которые привели к настоящей электронной революции и массовому производству классических компьютеров. И если говорить о современных технологиях, основанных на квантовой теории, то они могут быть усовершенствованы.

Запутанность квантовых состояний это реальность.

Так, мы знаем, что информация в обычных компьютерах принимает форму двоичных цифр (битов), которые могут иметь только два состояния: 0 или 1. Суперпозиция квантовых битов (кубитов) позволяет компьютеру хранить и 0 и 1 по отдельности, а также комбинацию обоих значений одновременно используя суперпозиции этих двух состояний.

Вам будет интересно: Предполагает ли квантовая механика множественность миров или что такое интерпретация Эверетта?

На самом деле квантовые вычисления являются самой горячей темой среди физиков и инвесторов, так как обладают невероятным потенциалом с точки зрения скорости и эффективности по сравнению с классическими компьютерами. И все же впереди еще много работы, прежде чем квантовые компьютеры появятся на рынке.

Для создания функционального квантового компьютера требуется удерживать объект в состоянии суперпозиции достаточно долго, чтобы выполнять на нем различные процессы.

По мнению некоторых исследователей, квантовые компьютеры предоставят нам возможность изучать саму квантовую физику неизвестным до сих пор способом. Его можно будет использовать, например, для моделирования поведения молекул лекарств и разработке новых материалов для более эффективных батарей или источников энергии.

Квантовая телепортация, датчики и связь

Звучит как фантастика, но связь между запутанными парами частиц необходима для успешной квантовой телепортации. Исследователи провели множество экспериментов и к 2017 году им удалось телепортировать фотон с Земли на орбиту. Квантовая телепортация также лежит в основе планов по созданию квантового интернета.

Больше по теме: Возможна ли телепортация человека?

В свою очередь, квантовые датчики могут измерять стимулы, например, магнитные поля или высокочастотные сигналы. Их можно использовать в том числе для выявления рассеянного склероза на ранней стадии; мониторинга и заблаговременного предупреждения о вулканической активности; а также для помощи самоуправляемым транспортным средствам «видеть» что находится за поворотом.

Квантовые технологии сложная область физики, которая исследует поведение субатомных частиц

Что же до квантовой коммуникации, то защита данных с использованием законов квантовой физики может использоваться для обмена секретной информацией, используемой для шифрования и аутентификации. Кванты также могут быть использованы для вычислений и решения определенных задач, с решением которых обычные компьютеры не справятся.

Квантовое будущее

Страны по всему миру, включая Китай, Канаду и США, объявили о многомиллионных и миллиардных исследовательских программах по продвижению квантовых технологий и работы в области квантовой информатики. Очевидно, что квантовые информационные технологии окажут мощное влияние на весь мир, но мы только-только начинаем понимать, как будет выглядеть квантовое будущее.

Не пропустите: Может ли квантовая механика объяснить существование пространства-времени?

Если квантовые компьютеры станут достаточно большими и будут содержать тысячи или миллионы кубитов, они позволят понять сложные химические реакции и разработать новые лекарства. Это, в свою очередь, приведет к разработке новых материалов и вычислений.

Разработка квантовых компьютеров позволит добиться научного прорыва в области биологии, химии, медицины и транспорта.

В конечном итоге все эти данные позволят ученым оптимизировать алгоритмы искусственного интеллекта и машинного обучения, кибербезопасности и финансов, а также расшифровке кода, на котором основана безопасность современных систем связи.

Более того, некоторые исследователи полагают, что в течение ближайшего десятилетия мы наконец увидим появление искусственного интеллекта. Интересно и то, что появление квантовых технологий приблизит нас к новому пониманию природы, Вселенной и нас самих. А как вы думаете, куда в первую очередь приведут нас инновации в квантовой теории? Ответ будем ждать здесь, а также в комментариях к этой статье.

Подробнее..

В Китае создан квантовый компьютер, который решил самую сложную задачу за 200 секунд

09.12.2020 22:17:59 | Автор: admin

Изобретение квантового компьютера может изменить жизнь человечества

Китайские ученые разработали квантовый компьютер, который смог решить одну из самых сложных задач за 200 секунд. Даже самый мощный классический компьютер потратил бы на вычисление около 2,5 миллиарда лет. Явление, при котором квантовый компьютер оказывается гораздо мощнее обычного, принято называть квантовым преимуществом. Впервые о достижении квантового преимущества в 2019 году объявила компания Google, но их успех был подвержен критике. В рамках этой статьи предлагаю вам вкратце разобраться, что такое квантовый компьютер, какую именно задачу он смог решить и каким образом. И значит ли это, что в скором будущем наши домашние компьютеры станут в тысячи раз мощнее?

Что такое квантовый компьютер?

Если говорить коротко, в классических компьютерах для хранения информации используются биты. А в квантовых компьютерах для этого используются так называемые кубиты, которые вмещают в себя гораздо больше данных. Именно поэтому считается, что квантовые компьютеры потенциально гораздо мощнее, чем классические. Только вот на данный момент ученые не умеют управлять большим количеством кубитов и в квантовых компьютерах их насчитывается всего лишь несколько десятков. А вот в обычных компьютерах количество оперативной памяти составляет несколько гигабайт, то есть десятки миллиардов (!) битов.

На данный момент квантовые компьютеры выглядят примерно так

Что такое квантовое преимущество?

Квантовые компьютеры в будущем действительно могут заменить собой обычные, но на данный момент они далеки от совершенства. Однако, даже имея при себе всего лишь несколько кубитов, некоторые задачи они решают в тысячи раз быстрее даже самых мощных компьютеров. Такие достижения называются квантовым преимуществом и в 2019 году таким успехом поделилась компания Google. Разработанный ею квантовый компьютер Sycamore решила одну сложную задачу за 3 минуты. А для суперкомпьютера Summit для этого потребовалось бы более 10 000 лет. Но скептики отметили, что при правильной настройке компьютер Summit справился с задачей за несколько дней. Так что факт достижения квантового превосходства компанией Google до сих пор подвергается сомнению.

Квантовый компьютер Sycamore

Интересный факт: изначально упомянутый выше термин звучал как квантовое превосходство. Но потом это словосочетание сочли неполиткорректным и заменили на квантовое преимущество.

Китайский квантовый компьютер

В 2020 году достигнуть квантового превосходства попытались китайские ученые. Для этого они разработали компьютер, предназначенный для решения задачи по сэмплированию бозонов. Если говорить очень коротко, то системе нужно было рассчитать прохождение частиц света (фотонов) через оптический прибор. Эта задача была сформулирована несколько лет назад, но математическую формулу для ее решения создать попросту невозможно. По словам авторов научной работы, суперкомпьютеру TaihuLight для решения этой задачи потребовалось бы около 2,5 миллиардов лет. Но квантовый компьютер справился с задачей всего за 200 секунд.

Один из самых мощных компьютеров в мире Sunway TaihuLight

Читайте также: В России создадут 50-кубитный квантовый компьютер

Решение стало возможным благодаря одной хитрости. Так как в задаче речь идет о частицах света, вместо кубитов в компьютере использовались такие же фотоны. Таким образом ученые упростили задачу прямо на уровне железа. Получается, что исследователям действительно удалось достичь квантового превосходства. Но и на это раз без критики не обошлось. Дело в том, что созданное для решение задачи устройство можно назвать компьютером лишь с большой натяжкой. В нем используются квантовые вычисления при помощи кубитов, но его нельзя программировать. То есть, на данный момент такой компьютер нельзя использовать для решения других задач. Но факт того, что квантовое преимущество достигнуто, уже есть.

Если вам интересны новости науки и технологий, подпишитесь на наш Telegram-канал. Там вы найдете анонсы свежих новостей нашего сайта!

Однако, с течением времени программируемая система на основе квантов все равно наверняка будет создана. Когда это случится, технологии станут развиваться с молниеносной скоростью. Например, человечество сможет быстро изобретать лекарства от опасных заболеваний и даже узнавать тайны Вселенной. Подробнее о том, как работает квантовый компьютер, можно узнать из этого видео.

Подробнее..

Категории

Последние комментарии

© 2006-2024, umnikizdes.ru