Русский
Русский
English
Статистика
Реклама

Ядерная энергия

NASA может отправить людей на Марс при помощи ядерного двигателя. Это не опасно?

09.02.2021 00:14:03 | Автор: admin

Ядерный двигатель может ускорить полеты на Марс

Аэрокосмическое агентство NASA хочет высадить людей на Марсе к 2035 году. Для этого ему необходимо разработать космический корабль, который сможет пролететь 55 миллионов километров. По расчетам исследователей, в лучшем случае преодоление этого пути займет 7-8 месяцев. За это время может произойти что угодно, начиная от конфликта между членами экипажа и заканчивая получением смертельной дозы космической радиации. Поэтому чем быстрее аппарат сможет доставить людей на далекую планету, тем лучше. Представители компании Ultra Safe Nuclear Technologies (USNC-Tech) предложили оснастить космический корабль ядерным двигателем. По их мнению, благодаря ему достигнуть Марса можно будет всего лишь за 3 месяца. Но насколько безопасно отправлять в космос ядерный реактор? Ведь члены экипажа корабля могут пострадать от его излучения, да и во время запуска он может попросту взорваться. Компания уже придумала, как сделать ядерный двигатель максимально безопасным.

Ядерный двигатель для космического корабля

По словам главы USNC-Tech Майкла Идса (Michael Eades), ядерный двигатель будет более эффективен для полетов на дальние планеты, чем химический двигатель. Как минимум, он позволит быстро преодолевать большие расстояния, сжигая меньше топлива. Использование меньшего количества топлива должно заметно снизить стоимость космических полетов. А быстрый полет сократит время воздействия космической радиации на организмы членов экипажа корабля. Люди еще ни разу не летали на далекие планеты. Но считается, что космическая радиация может вызвать лучевую болезнь, повысить риск возникновения рака в течение жизни и разрушить нервную систему человека.

К тому же, быстрый полет повышает вероятность успеха миссии:

Чем дольше люди будут находиться в полете, тем больше вероятность, что что-то пойдет не так, объяснил Джефф Шихи, главный инженер Управления космических технологий NASA.

Как работает ядерный двигатель?

О том, как работает ядерный двигатель, вкратце рассказало издание CNN. Сперва ядерный реактор вырабатывает тепло из уранового топлива. Затем полученная тепловая энергия нагревает жидкое топливо, роль которого обычно играет жидкий водород. Топливо расширяется в газ и выбрасывается из сопла, создавая тягу. Ядерный двигатель производит вдвое большую тягу на единицу топлива, чем двигатели на основе химических процессов.

Впервые об использовании ядерных двигателей в космосе задумались в XX веке

Но чтобы использовать ядерный двигатель в космосе, нужно найти урановое топливо, которое способно выдерживать высокие температуры внутри двигателя. Компания USNC-Tech уверяет, что разработало топливо, которое может работает даже при 4400 градусах Цельсия. Оно содержит карбид кремния, который часто используется в качестве покрытия для элементов ядерного топлива в реакторах с высокими температурами.

Примерно так будет выглядеть производство ракетных двигателей USNC-Tech

Читайте также: Как будут выглядеть марсоходы будущего?

Опасность ракетных двигателей

Итак, компания смогла разработать подходящее топливо. Но как защитить членов экипажа корабля от радиации? По словам Майкла Идса, хранящееся между двигателем и жилым сегментом корабля жидкое топливо должно хорошо блокировать радиоактивные частицы. При проектировании корабля важно будет сделать так, чтобы будущие колонисты Марса находились как можно дальше от реактора. И все, проблему можно считать решенной.

Ядерная двигательная установка USNC-Tech

А чтобы ядерный двигатель не навредил людям во время взлета, запуск корабля предлагается осуществлять с космоса. Корабль будет выводиться на земную орбиту обычной ракетой и только потом будет включать ядерный реактор. Если катастрофа произойдет во космосе, радиоактивные вещества будут двигаться настолько медленно, что достигнут Земли или других планет только спустя десятки тысяч лет. За это время они уже утратят свои вредные свойства.

Запуск космического корабля предлагается осуществлять вне Земли, потому что так безопаснее

Агентство NASA уже должна быть в курсе об идее компании USNC-Tech. Если она будет принята, в будущем полет на Марс будет заниматься всего лишь около 90 дней. В случае, если технология окажется безопасной и эффективной, ядерные двигатели можно будет использовать даже в сфере космического туризма. Ведь в будущем людям явно будут доступны не только путешествие вокруг земной орбиты, но и экскурсии в далекие планеты.

Если вам интересны новости науки и технологий, подпишитесь на наш Telegram-канал. Там вы найдете анонсы свежих новостей нашего сайта!

Об использовании ядерных двигателей агентство NASA размышляет уже давно. О преимуществах ядерных двигателей ранее уже рассказывалось в этой статье. Также в ней говорится о других технологиях, которые могут ускорить космические путешествия.

Подробнее..

Ядерная ракета Vasimr доставит людей на Марс за один месяц. Опасна ли она?

23.09.2021 18:08:27 | Автор: admin

Примерный внешний вид ядерной ракеты Vasimr VX-200SS для полетов на Марс

По оценкам аэрокосмического агентства NASA, для достижения поверхности Марса людям необходимо преодолеть 55 миллионов километров. При использовании существующих сегодня ракет это может занять 7-8 месяцев за это время с кораблем и самим экипажем может произойти много неприятностей. Плохих сценариев предостаточно, начиная с банальной поломки ракеты и заканчивая конфликтом среди астронавтов. Именно поэтому в 2010 году глава компании Ad Astra Франклин Чанг-Диас (Franklin Chang-Diaz) объявил, что обычные ракеты не смогут доставить людей на Марс. В качестве более мощной альтернативы его компания создает ядерную ракету Vasimr VX-200SS, которая способна доставить астронавтов на Красную планету всего за один месяц. Недавно она успешно прошла 88-часовые испытания и тем самым установила новый мировой рекорд выносливости ядерных ракетных двигателей. Что же еще известно о будущей ракете и как она работает?

Преимущества ядерных ракет

Подробностями о ракете для полетов на Марс поделилось издание Interesting Engineering. Сообщается, что обычные ракеты расходуют весь запас своего топлива за один управляемый взрыв во время запуска. Они не могут временно остановить использование топливо и даже не способны резко изменить траекторию своего полета. Также между космическим кораблем и центром управления непременно будет 10-минутная задержка связи. Получается, что если с экипажем произойдет что-то страшное, нам придется с ужасом наблюдать за их гибелью с Земли им помочь будет невозможно.

Для полетов на Марс в будущем планируется также использовать Starship от SpaceX

По словам компании Ad Astra, их ракета Vasimr VX-200SS способна устранить все эти сложности. Установленный в нее двигатель сможет выключаться и активироваться во время всего полета. Он будет постепенно ускоряться и достигнет своей пиковой скорости в 54 километра в секунду уже к 21 дню полета. Получается, что он будет в 4 раза быстрее всех существующих сегодня космических ракет. Благодаря этой особенности, она сможет доставить людей на Марс всего за 1 месяц вместо 7-8 месяцев. Члены экипажа подвергнутся меньшему воздействию космической радиации, что очень хорошо недавно я уже писал, что для целостности астронавтов полеты в космосе должны быть максимально короткими. Двигатель ракеты также позволит в любое время изменить маршрут движения.

Полет на Марс планируется совершить примерно в 2024 году. Верите ли вы, что человечеству удастся это сделать в такие короткие сроки? Пишите в нашем Telegram-чате

Читайте также: Осознают ли люди, что полет на Марс это билет в один конец?

Принцип работы ядерного двигателя

Название ракеты Vasimr связана с аббревиатурой, которую можно перевести как Электромагнитный ускоритель с изменяемым удельным импульсом. Если говорить коротко, используемый в нем двигатель использует ядерные реакторы для нагрева плазмы (получается из газа под воздействием радиоволновых антенн) до двух миллионов градусов. После этого реактивная струя выходит из задней части двигателя, приводя ракету в движение со скоростью до 197 950 километров в час (54 километра в секунду). Подробнее о том, как работают ядерные двигатели, я уже рассказывал в этом материале.

Визуализация работы ракетного двигателя Ad Astra

Опасность ядерных ракет

Идея компании Ad Astra звучит и круто, и опасно. Но она уже примерно знает, как обезопасить жителей Земли и космических путешественников от излучения ядерного двигателя. Во-первых, ракета Vasimr будет активирована только после вывода на орбиту при помощи обычной ракеты-носителя. Если во время запуска произойдет взрыв, опасные частицы не смогут достигнуть земной поверхности. А для защиты астронавтов планируется использовать не пропускающие излучение материалы.

Испытание Vasimr VX-200SS в 2017 году на мощности 30 кВт (недавний тест был проведен на мощности 80 кВт)

Недавно в лаборатории компании Ad Astra в Техасе были успешно проведены 88-часовые испытания ракеты Vasimr на выносливость. По словам главы компании Франклина Чанг-Диаса, это большой успех и награда за множество лет испытаний. Сообщается, что упорная команда достигла больших результатов методом проб и ошибок, при этом даже не думая сдаваться. Для справки стоит отметить, что сам Франклин Чанг-Диас является известным американским физиком и астронавтом NASA, который совершил семь космических полетов и в общем числе провел в космосе 1601 час. Компанию Ad Astra он основал после того, как завершил карьеру астронавта.

Франклин Чанг-Диас

Если вам интересны новости науки и техники, подпишитесь на наш канал в Яндекс.Дзен. Там вы найдете статьи, которые не были опубликованы на сайте!

Как всегда, в конце статьи про ядерные ракеты для полетов в космос, хочу порекомендовать статью про самые быстрые способы космических путешествий. Перейдите по этой ссылке и вы узнаете об электромагнитном двигателе EM Drive, термоядерном прямоточном воздушно-реактивном двигателе и других технологиях, которые в будущем позволят нам осваивать космос. Приятного чтения!

Подробнее..

Почему Чернобыль является угрозой для мира, даже 34 года спустя

23.04.2020 02:19:35 | Автор: admin

Даже те, кто родился уже после чернобыльской аварии, наверняка про нее слышали. Не удивительно, ведь это одна из самых серьезных техногенных катастроф в истории человечества. Как минимум, она одна из самых известных и широко освещаемых в массовой культуре катастроф. Про нее снимали фильмы и сериалы, писали книги и научные труды. Сейчас эта территория стала местом паломничества туристов и головной болью для украинских властей и экологов со всего мира. Казалось бы, территория находится в стороне, она никому не мешает и варится в собственном соку, но это не так. Периодически она напоминает о себе и заставляет людей понервничать. С чем это связано и стоит ли всерьез переживать по этому поводу?

Что случилось с природой после аварии на Чернобыльской АЭС

Многие говорят, что авария, которая произошла уже больше тридцати лет назад, унесла всего около 50 жизней. Так-то оно так, только вот по самым скромным подсчетам уже после аварии умерли еще около 4 000 ликвидаторов. А сколько людей получили серьезные заболевания после облучения? Очень много. Кто-то живет с ними до сих пор, а кто-то даже передал их своим детям.

Большой ущерб был нанесен и природе. Многие видели на картинках знаменитый Рыжий лес (его даже стали так называть официально). Таким он стал буквально через несколько десятков минут после аварии. Все из-за того, что в том лесу были в основном сосны, а их иголки очень быстро впитывают в себя все загрязняющие вещества. Особенно это касается радиоактивных элементов, тонны которых, выброшенные в воздух после взрыва, окрасили лес в характерный желто-ржавый цвет.

Позже, примерно 15 квадрантных километров этого леса были снесены и захоронены, но остальные деревья остались и их иголки очистились только через несколько лет. Это связано с тем, что хвойные деревья постепенно сбрасывают иголки, обновляя их полностью через 3-5 лет.

Вот так буквально за полчаса лес изменил цвет на рыжий.

Также после аварии в вблизи Чернобыльской АЭС погибли почти все животные, а те, которые выжили, были отстрелены, чтобы они не могли разбежаться за пределы территории и разнести загрязнения на существенно большие территории.

Отстрел животных был лишь дополнительной мерой, так как куда больше радиации было разнесено по всему миру за счет ветра. Облако накрыло не только западную часть территории СССР, но и большую часть территории Европы. Повышение уровня радиации было зафиксировано даже на Восточном побережье США

Все произошедшее сделало леса вокруг станции непригодными для жизни на долгие годы не только для людей, но и для животных. Правда, если людям сказали, что в Припяти нельзя будет жить в течение 24 000 лет, то животным это объяснить забыли. В итоге, они вернулись куда быстрее и начали активно заселять территории. Чем же это нам сейчас грозит?

Чем опасна территория вокруг Чернобыльской АЭС

Стоит понимать, что риски кроются не только в вернувшихся животных, но и во многом другом. Такие серьезные аварии не проходят бесследно и, если непосредственно на этой территории люди не умирают, это не значит, что эхо аварии не доносится до соседних территорий.

Пожары в Чернобыле

Последние несколько недель пожары в районе Чернобыльской АЭС не сходили с первых полос многих СМИ. Проблема в том, что горение — это такой процесс, при котором выделяется дым и появляется зола. Все это ветром разносится на большие территории. Если горит просто сухая трава, то ничего страшного не произойдет, и в городах по соседству будет только задымление и небольшое повышение уровня СО2.

Вот такой сильный пожар был в зоне отчуждения Чернобыльской АЭС.

Совсем другое дело, когда горит трава и деревья в зоне радиационного заражения. Это приводит к тому, что в воздухе, как тридцать с лишним лет назад, начинают летать частицы радиоактивных элементов. Их период полураспада очень длительный и говорить о том, что за это время все рассеялось, не стоит. Это не так.

Период полураспада - время, за которое частицы (ядра, атомы) теряют половину интенсивности своей реакции распада, а количество этих частиц снижается в два раза. Для расчетов берется именно период полураспада, так как скорость снижения количества частиц уменьшается со временем. В случае атомной катастрофы, полностью безопасной зараженная территория не станет почти никогда. Например, период полураспада радия исчисляется тысячами лет, а некоторых изотопов урана - сотнями миллионов лет.

В результате такого воздействия люди снова начинают дышать всякой гадостью, а на улицах городов оседает слой зараженной пыли, который еще несколько недель после ликвидации пожаров лежит на тротуарах и в квартирах людей.

Ночью всполыхи пламени было видно за много километров от места пожара.

Существуют рейтинги загрязненности столиц мира. Так как ближайшей к месту аварии столицей является Киев, на прошлой неделе он входил в тройку городов, возглавлявших этот рейтинг. Сейчас источник ликвидирован и ситуация, к счастью, начала улучшаться.

Атомные станции взрываются уже не в первый раз. Стоит ли продолжать ими пользоваться? Да и вообще, как работает АЭС?

Опасность животных из зоны заражения

Представлять себе, что в зоне заражения бегают коровы, которые могут пускать из глаз лазерные лучи, или собаки, как в сериале Чернобыль, снятом каналом ТНТ, не стоит. Действительно серьезные физические отклонения случаются крайне редко. Хотя, можно найти фотографии с двухголовыми рыбами и тому подобным. Но дело в том, что такие мутации встречаются и в других местах нашей планеты. Из хоть немного серьезных отклонений можно назвать повышенный процент птиц-альбиносов, снижение потомства грызунов и небольшой срок жизни насекомых.

Вот такие дикие лошади ходят в чернобыльских лесах.

Вообще, популяция животных за последнее время очень сильно выросла. В этом плане злой иронией является то, что присутствие человека и отходы его жизнедеятельности причиняют животным куда больше дискомфорта, чем постоянное радиоактивное излучение. К нему они адаптировались куда лучше.
В итоге на заброшенной территории появился настоящий заповедник с медведями, зубрами, рысями, волками, выдрами и другими дикими животными. С одной стороны, можно порадоваться за них, раз им так хорошо, но не все столь радужно.

Бывали и другие случаи аварий на атомных станциях

Для животных нет границ. Они могут покидать насиженные территории и перемещаться не только внутри одного леса, но и уходить в другие страны. Там они могут стать добычей охотников или дать больное потомство, которое опять же попадет на ужин человеку или хищнику. Так загрязненное мясо будет разноситься по миру и отравлять его.

Внешне чернобыльские животные выглядят здоровыми.

Птицы тоже могут разносить с собой продукты распада на огромные территории. Для того, чтобы следить за популяцией и по мере надобности принимать меры, ученые установили на территории около 50 камер, которые дают им вполне понятную картину происходящего в мертвом лесу.

Вода с зараженной территории

На зараженной территории есть небольшие реки и грунтовые воды. Конечно, загрязнение попадает и в них. В итоге, частицы разносятся на большие территории и попадают даже в мировой океан. Впрочем, в нем хватает отходов атомной станции Фукусима-1, которая разрушилась после цунами в Японии в 2011 году.

Вода это что... А вот водка из Чернобыля это сильно.

Работает ли сейчас Чернобыльская АЭС

Для многих будет неожиданностью, но Чернобыльская АЭС после аварии в 1986 году в той или иной мере работала еще до 2000 года. Все из-за того, что нельзя просто так остановить реакторы и, грубо говоря, выключить станцию.

Даже сейчас Чернобыльскую АЭС условно можно считать действующей. По техническим причинам она до сих пор не до конца законсервирована и работы в этом направлении продолжают вестись.

О жизни в этом городе не стоит говорить еще 24 000 лет.

До сих пор над четвертым энергоблоком, где и произошел взрыв, строится второй саркофаг, так как построенный сразу после аварии уже начал разрушаться. Кроме этого, консервируются реакторы и наиболее зараженное оборудование. Для захоронения ядерного топлива строятся специальные бассейны. Все эти работы ведутся с участием международных фондов.

Оказывается самое радиоактивное место на Земле это вовсе не Чернобыль.

Из-за того, что использование территорий по прямому назначение (для работы и жизни) невозможно, логично было бы подумать, как можно их использовать. В итоге было решено развернуть в Чернобыле солнечную электростанцию. Еще в 2016 году всего в паре сотен метров от саркофага на площади около 1,6 гектара были установлены 3800 фотоэлектрических панелей, суммарной мощностью 1 мегаватт. Это сравнимо с небольшой гидроэлектростанцией и способно обеспечивать энергией небольшой поселок или примерно 2 000 квартир.

Так добывают солнечную энергию в Чернобыле.

На этом строительство панелей не заканчивается и мощности будут наращиваться. Так Украина должна стать страной номер один в Европе по энергии, вырабатываемой на солнечных электростанциях.

Как попасть в Чернобыль

Если описанное выше вас не убедило и вы готовы рискнуть своим здоровьем, то вы можете присоединиться к примерно 70 000 человек, которые ежегодно посещают Чернобыль в качестве туристов.

Тех, кто бывал в зоне отчуждения Чернобыльской АЭС мы всегда будем рады выслушать в нашем Telegram-чате. Нам очень интересно что там сейчас происходит.

Там действительно есть на что посмотреть, но вы должны будете подписать бумагу, что не имеете претензий к организатору экскурсии, если с вами что-то случится, и строго следовать за гидом.

Приехав туристом в Припять можно встретить тех самых диких животных.

Они знают все дороги, по которым можно ходить без существенно облучения. Ведь шаг влево или шаг вправо может в прямом смысле стоить жизни. Уровень заражения территорий очень неоднороден.

Зато только там можно осознать, насколько хрупко то, что люди строят годами, на что рассчитывают и к чему прикипают душой. Был большой город, в котором жили люди, а теперь его нет. То есть, город остался, но жить там больше нельзя. Люди бросили все и уехали. А все из-за того, что мирный атом вышел из-под контроля.

Люди ушли, а природа осталась. Что сейчас происходит в окресностях Чернобыля?

Подробнее..

Как захоранивают ядерное топливо, и как долго оно опасно

08.05.2020 16:10:10 | Автор: admin

До тех пор, пока мы не научимся получать энергию из реакции термоядерного синтеза, самым эффективным и экономичным способом ее добычи будут атомные станции. Только они могут обеспечить огромное количество энергии с минимальными затратами топлива. Проблема в другом. Все это топливо после того, как переходит в разряд отработанного ядерного топлива (ОЯТ), становится бременем для нашей планеты. Его надо куда-то девать и за прогресс приходится платить. Как говорится, вход рубль, выход — два. Но как можно справиться с ним, чтобы это топливо не вредило планете и ее жителям? Оказывается, есть несколько очень действенных способов, кроме захоронения. Давайте посмотрим, во что превращается выхлоп атомной станции.

Какие бывают типы радиоактивных отходов

В первую очередь, надо понимать, что радиоактивные отходы образуются не только от атомных электростанций, но и от других областей деятельности человека. Например, от исследований и лаборантской работы с радиоактивными изотопами, лучевой терапии онкологических больных и от радиоизотопных термоэлектрических генераторов (РИТЭГов), которые применяются в труднодоступных местах для получения энергии. Хотя, в последнее время их используют в основном только на космических станциях.

Есть еще один очень большой источник радиоактивных отходов, а именно, военная промышленность, и особенно — наследие холодной войны. Именно ракеты, бомбы и подводные лодки того времени до сих перерабатываются и представляют угрозу заражения.

Вообще, радиоактивных отходов в год производятся сотни тысяч тонн, но не только из-за того, что вырабатывается столько топлива, а из-за того, что по требованиям МАГАТЭ (Международное агенство по атомной энергии) радиоактивными отходами признаются любые отходы производства, которые имеют на выходе уровень излучения выше нормативного. Так сюда попадает оборудование, техника, краны, спецодежда, приборы, даже канцтовары и целые автомобили. По нормативам на предприятиях все постоянно проверяется, а пред списанием производится контрольный замер и принимается решение просто выбросить или утилизировать.

Все радиоактивные отходы должны быть промаркированы

Кстати, спешу вас обрадовать. Вопреки всеобщему мнению, что в Россию за копейки свозят все подряд и захоранивают на территории Дальнего Востока, это не так. Более того, с 2011 года действует закон, который запрещает перемещение через границу (в обе стороны) отходов атомной промышленности за исключением возврата отходов топлива, которое было произведено на территории России или СССР. Так обеспечивается соблюдение требований договоров на поставку топлива и оборудования.

Как работает АЭС? Опасны ли атомные станции?

Естественно, в нашей стране должно быть нормальное количество предприятий, которые занимаются дальнейшей судьбой радиоактивных отходов и они есть, например, известное ПО Маяк. Интересно то, что вопреки всеобщему мнению, отходы не только закапывают, но и находят им другое, зачастую полезное применение.

Что делают с радиоактивными отходами

Есть несколько способов решить дальнейшую проблему радиоактивных отходов. К основным относятся переработка, хранение и захоронение. Иногда прибегают к комбинированным способам, которые можно применять в любом сочетании, если это позволит добиться правильного результата.

В таких стержнях в реакторы загружают атомное топливо. Потом с ним надо что-то делать.

Прежде всего, перед началом работ производится сбор отходов с предприятий, которые работают с соответствующими материалами.

Согласно действующему законодательству, работать с радиоактивными элементами и их отходами могут только предприятия, имеющие на это соответствующие лицензии. Действие предприятий ограничено строгими правилами и принцип что не запрещено, что разрешено не работает. Тут наоборот - что не разрешено, то запрещено.

Отходы перевозятся на заводы в специальных контейнерах, который могут быть стальными, свинцовыми, железобетонными, из обогащенного бором полиэтилена и другими. Все отходы перевозятся со строгим соблюдением норм безопасности, а большие партии даже в сопровождении конвоев.

Так радиоактивные отходы транспортируют по железной дороге.

Как хранят отходы атомной промышленности

Для некоторых отходов принимается решение хранить их. Это происходит тогда, когда переработка получается очень дорогой или сложной, а так же тогда, когда все другие способы уже не подходят.

Примером того, что проще захоронить, чем переработать, являются атомные подводные лодки времен холодной войны. В самый разгар гонки вооружений в СССР их было больше двух с половиной сотен, а сейчас примерно в пять раз меньше. Оставшиеся двести лодок как поплавки стояли на приколе до того времени, пока не пришла очередь их перерабатывать. Да этого из них вырезались три отсека (реакторный и два соседних) и отправлялись на складирование в специальных упаковках. Остальная часть перерабатывалась в штатном режиме.

Так выглядит площадка для хранения реакторных отсеков подводных лодок в Кольском заливе. Справа «плавает» ржавый отсек, который только готовится к упаковке. На переднем плане док-понтон для транспортировки и других операций с отсеками атомных лодок.

Такое хранение производится на скальном основании. Для этого даже сняли часть сопки, чтобы они не стояли на грунте, через который может произойти загрязнение грунтовых вод, которые перенесут все элементы еще дальше.

Такое хранение полностью безопасно, но выглядит так себе. Да и просто, лучше спрятать эти отходы с глаз долой. Для этого делаются примерно такие же хранилища, но вокруг них строятся бункеры и все это присыпается землей для того, чтобы они вообще никак себя не выдавали. Так поступают только с не очень опасными отходами, которые еще могут быть переработаны через какое-то время.

А начиналось все с такого красивого куска урановой руды.

Иногда для временного хранения делаются искусственные законсервированные бетонные боксы, которые еще называют мокрыми, но это тоже временная мера. Для этого они все равно имеют толстые бетонные стенки, но они не способны безопасно хранить в себе отходы в течение сотен и тысяч лет. Для этого нужно строить уже не хранилища, а полноценные могильники. Об этом мы поговорим чуть ниже.

Надо просто понимать, что какие-то отходы имеют высокую радиоактивность, а какие-то нет. Кроме этого, период полураспада одного изотопа составляет десятки лет, как, например, трития, а какого-то — миллиарды, например, некоторых урановых изотопов.

Как перерабатывают ядерное топливо

Для переработки отработанного ядерного топлива и других отходов используется совершенно разный подход в зависимости от того, что конкретно перерабатывается. Например, часть твердого мусора сжигается в специальных печах со сложной системой фильтрации воздуха. Полученный на выходе пепел и золу захоранивают на долгое время в могильниках. Так отходы занимают существенно меньше места и несут меньше вреда.

Если отходы жидкие, их концентрируют путем выпаривания. После чего тоже отправляют на долгосрочное хранение, если с ними невозможно больше ничего сделать и они несут в себе большую опасность. Для этого их пакуют в толстые бочки по 100 или 200 литров из свинца или стали.

Как думаете, почему ученые озабочены проблемой атома?

При этом большая часть отходов может быть переработана для дальнейшего использования, например, в медицине или исследовательской деятельности. Такими отходами являются те, которые содержат уран-235, уран-238, плутоний иряд других изотопов. Таким образом, можно переработать до 97 процентов ядерного топлива. То есть, как видим, само топливо не так страшно для экологии. Оно очень даже неплохо используется повторно. Совсем другое дело те отходы, которые нельзя переработать и нельзя (да и не за чем) хранить. Вот тут действительно начинается головная боль.

Радиоактивные изотопы используются в медицине.

Где захоранивают ядерное топливо

Надо понимать, что отходы атомной промышленности, которые имеют высокую радиоактивность и уже никому не нужны, надо захоранивать так, чтобы они надежно пролежали в своем домике тысячи и даже десятки тысяч лет. Ученые уже давно пришли к тому, что самыми надежными местами для этого являются скальные породы на большой глубине.

Вообще хранение в скальных породах является очень перспективным и обеспечивает те самые десятки тысяч лет надежной консервации. Сама Земля помогает в этом, а что в рамках нашего мира может быть более вечным, чем ее твердь? Поэтому нужны именно скалы. Например, в США идут активные дебаты по поводу строительства впустыне Невады могильника Юкка-Маунтин. Оно должно уйти насотни метров ввулканический горный хребет. Даже Швеция, одна из самых экологичных стран, рассматривает варианты захоронения внутри скальных оснований. Да и Финляндия уже с 2015 года практикует такое и продолжает расширять полезный объем хранилищ. Получается, что в этом нет ничего страшного? Получается, так.

Могильники в скальных породах на глубине 400 метров и более настолько надежны, что смогут выдержать даже попадание метеорита, который уничтожит жизнь на Земле. Потом она начнет эволюционировать заново, а отходы будут по-прежнему надежно спрятаны.

В качестве временных могильников в экстренных случаях используются рукотворные репозитории. Для них готовятся толстые бетонные основания. В эти бассейны помещаются радиоактивные отходы, после чего сверху заливаются еще несколькими слоями бетона. Иногда еще в качестве дополнительной меры безопасности применяется заливка расплавленным боросиликатным стеклом. Так консервация будет еще более надежной, но все равно такой способ применяется больше как крайняя мера, так как скалы куда более постоянная вещь. Они были за миллион лет до нас, будут и через миллион лет после нас, а как поведет себя бетон через 100 лет, мы можем только гадать. Простите, прогнозировать.

Так выглядит один из вариантов бетонного хранилища.

Например, такие могильники есть в Чернобыле, где просто нет смысла вывозить тонны земли и прочего мусора. Для того, чтобы загрязнение было хотя бы немного меньше, особо опасные отходы собираются в такие могильники, оборудованные непосредственно на месте.

Важным моментом в строительстве могильников является учет нагрева отработанного топлива. Из-за того, что оно до сих пор активно, проходящие на атомном уровне процессы приводят к нагреву материала. Это учитывается и могильники имеют специальную рассеивающую тепло структуру. Если это не учесть, бесконтрольный рост температуры может плохо закончиться

Не так давно у нас в Telegram-чате очень горячо обсуждали тему захоронения отходов в космосе. В принципе эта идея очень неплохая. Достаточно запустить контейнеры с отходами в сторону Солнца или в догонку за Вояджерами и проблема решена, но ценник таких работ будет просто космическим. Возможно, когда-то на новом этапе развития технологий, примерно через 1000-1500 лет наши потомки смогут найти способ дешевого вывода на орбиту и тогда отправят весь наш мусор из могильников куда подальше.

Почему ядерное топливо закапывают, а не уничтожают

Надо понимать, что технологии сейчас и технологии через 50-100 и более лет находятся на совершенно разном уровне. Исходя из этого, есть смысл сейчас не заниматься дорогущей глубокой переработкой радиоактивных отходов. Полностью их вычистить все равно не получится, но зато через десятки и сотни лет промышленности могут понадобиться редкие изотопы, которые люди будущего смогут найти в тех самых хранилищах и могильниках, что мы строим сейчас.

Так захоронили технику в Чернобыле после ликвидации последствий аварии. Вот только минус был в том, что многое растащили на запчасти и теперь зараженные машины ездят по городам.

Также есть возможность того, что в будущем технологии достигнут нового уровня и то, что мы сейчас просто не можем переработать, будет достаточно облить из ведра (конечно, утрировано) и все станет нормально. Пока ученые делают все, что могут, но захоронение и переработка находятся в балансе, а не в стремлении любой ценой переработать как можно больше отходов.

Альтернатива ядерного топлива

Отличной альтернативой ядерного топлива и атомных станций в целом являются термоядерные реакторы. Я про них уже рассказывал и, если интересно, подробно можете прочитать в отдельной статье на нашем сайте.

Если в двух словах, то эта технология была изобретена еще в пятидесятые годы прошлого века. Для ее реализации используется токамак (тороидальная камера с магнитными катушками). В ней создается вакуум, а вместо воздуха закачивается смесь дейтерия и трития (варианты соединений водорода). Под действием магнитного поля смесь разогревается до состояния плазмы — четвертого агрегатного состояния вещества. Ее температура еще 70 лет назад доходила до 11 миллионов градусов Цельсия. В ИТЭР международном токамаке, который строится на юге Франции, температура плазмы будет достигать 150 миллионов градусов. Стенки камеры при такой высокой температуре не плавятся как раз из-за того, что вся плазма находится в подвешенном состоянии Практически в вакууме.

Это токамак. Внутри этого «полого бублика» плазма достигает температуры в десятки миллионов градуосв Цельсия.

Такая технология безопасна. Даже тритий с небольшой радиоактивностью имеет период полураспада всего 12 лет. Взорваться такая установка не может даже в случае ЧП, так как давление внутри намного ниже атмосферного, а в случае нарушения условий, образование плазмы сразу прекращается. Даже просто перекрытие подачи топлива тоже сразу же остановит реакцию.

Что такое Токамак? Просто о термоядерном реакторе

Самое приятное, что топлива надо буквально минимум. Так, 80 грамм смеси дейтерия и трития, которые очень легко получаются из простой воды и стоят копейки, вырабатывают столько же энергии, сколько 1 000 тонн сожженного угля.

К сожалению, пока технология не может быть реализована в промышленном масштабе, но при благоприятном раскладе на это понадобится всего 10 лет. После этого мы сможем получить почти бесконечный источник энергии в виде небольшого солнца на Земле. А самое главное, цена такой энергии будет минимальной, как и риски ее получения.

Такие бочки пугают уже одним своим видом.

Подробнее..

Эффект Вавилова-Черенкова что нужно знать?

07.03.2021 16:07:35 | Автор: admin

Когда некие частицы, например, космические частицы, двигаются быстрее скорости света в некоторой среде, появляется излучение Вавилова-Черенкова.

В научно-фантастических фильмах ядерные реакторы и ядерные материалы всегда светятся синим светом. Например, в первом фильме про «Железного человека», герой Тони Старка в исполнении Роберта-Дауни младшего собирает небольшой ядерный реактор, питающий костюм. Интересно, что характерное голубое свечение, исходящее от реактора (будь тот настоящий) реально существующее явление под названием эффект Вавилова-Черенкова. Именно из-за него вода, окружающая ядерные реакторы, действительно светится ярко-синим. Впервые это свечение заметили физик Сергей Вавилов и его аспирант Павел Черенков в лаборатории Физико-математического института в 1933 году, когда увидели, что бутылка с водой, подвергшаяся воздействию радиации, засветилась синим светом. В 1958 году за это открытие Черенков получил Нобелевскую премию по физике, разделив ее с Ильей Франком и Игорем Таммом, которые экспериментально подтвердили существование эффекта. Хотя объяснить излучение Вавилова-Черенкова удалось только после публикации Альбертом Эйнштейном специальной теории относительности, его существование было предсказано английским эрудитом Оливером Хевисайдом еще в 1888 году.

Что такое излучение Вавилова-Черенкова?

Превысить скорость света в вакууме невозможно. Но когда элементарная частица находится в плотной среде, то может превысить это ограничение. Так, частица, разогнанная в вакууме, может влететь в воду со скоростью, например, 299 799 километров в секунду: так как законы физики запрещают мгновенное изменение скорости, частица, находясь в среде, пролетает какое-то расстояние быстрее местного ограничения. Во время полета частица тормозит теряя энергию, которой нужно куда-то деваться.

Как пишет Tass в статье, посвященной Нобелевской премии по физике 1958 года, при торможении машины кинетическая энергия переходит в нагрев тормозов, а сверхсветовые частицы отдают избыток в виде квантов излучения, то есть света. Одна из особенностей черенковского излучения заключается в том, что оно в основном находится в непрерывном ультрафиолетовом спектре, а не в ярко-синем.

Читайте также: Ученые приблизились к пониманию того, почему существует Вселенная

Интересно, что черенковское излучение аналогично эффекту звукового удара. Например, если самолет в воздухе движется медленнее скорости звука, то отклонение воздуха вокруг крыльев самолета происходит плавно. Однако если скорость движения превышает среднюю скорость звука, то происходит внезапное изменение давления и ударные волны распространяются от самолета в конусе со скоростью звука.

Вы наверняка замечали, что ядерный реактор Тони Старка сияет голубым светом.

То, как именно появляется излучение, детально проверяли Вавилов, Черенков, Тамм и Франк. Так как в 1951 году Вавилова не стало, трое физиков получили Нобелевскую премию семь лет спустя. Благодаря их работе, сегодня можно наблюдать излучение Вавилова-Черенкова практически где угодно. При. условии, конечно, что вы знаете, куда смотреть.

Хотите быть в курсе последних новостей из мира популярной науки и высоких технологий? Подписывайтесь на наш канал в Telegram чтобы не пропустить ничего интересного!

Жуткий синий свет

Когда черенковское излучение проходит через воду, заряженные частицы движутся быстрее света через эту среду. Таким образом, свет, который вы видите, имеет более высокую частоту (или более короткую длину волны), чем обычная длина волны. Поскольку в черенковском излучении преобладает свет с короткой длиной волны, свечение кажется синим. Это происходит потому, что быстро движущаяся заряженная частица возбуждает электроны молекул воды, которые поглощают энергию и высвобождают ее в виде фотонов света, возвращаясь к равновесию. Обычно некоторые из этих фотонов нейтрализуют друг друга (разрушительная интерференция), так что свечения не видно. Но когда частица движется быстрее, чем свет может пройти через воду, ударная волна создает конструктивную интерференцию, которую мы и видим как свечение.

Это интересно: Как выглядит самая маленькая частица во Вселенной?

Спектр излучения Черенкова непрерывен, и его интенсивность увеличивается с частотой; именно это и придает ему жуткий синий цвет, который вы видите на фотографиях реакторов «плавательного бассейна».

К счастью, излучение Вавилова-Черенкова можно использовать не только для того, чтобы вода в ядерной лаборатории светилась синим. Так, в реакторе бассейнового типа количество синего свечения может быть использовано для измерения радиоактивности отработавших топливных стержней. Излучение используется в экспериментах по физике элементарных частиц физики надеются, что оно поможет им определить природу исследуемых частиц.

Более того, черенковское излучение возникает, когда космические лучи и заряженные частицы взаимодействуют с атмосферой Земли, поэтому для измерения этих явлений, обнаружения нейтрино и изучения излучающих гамма-лучи астрономических объектов, например остатки сверхновых, используются детекторы.

О том, за что вручили Нобелевскую премию по физике в 2020 году и почему ученые считают, что до Большого взрыва существовали другие вселенные, я рассказывала в этой статье.

Интересно, что если релятивистские заряженные частицы ударяют в стекловидное тело человеческого глаза, то можно увидеть вспышки черенковского излучения, например, от воздействия космических лучей или в результате ядерной аварии, так что лучше, наверное, воздержаться.

Подробнее..

Как ядерная бомба помогла в создании первого квазикристалла?

20.05.2021 22:11:52 | Автор: admin

Геологи обнаружили материал в песке, расплавленном взрывом ядерной бомбы. Ранее такие материалы можно было обнаружить только в метеоритах

Ученые, занимающиеся поиском квазикристаллов так называемых «невозможных» материалов с необычной, неповторяющейся структурой обнаружили один из них в остатках первого в мире испытания ядерной бомбы. Ранее неизвестная структура, состоящая из железа, кремния, меди и кальция, вероятно, образовалась в результате слияния испаренного песка пустыни и медных кабелей. Аналогичные материалы были синтезированы в лаборатории и идентифицированы в метеоритах, но материал, описанный в новом исследовании, является первым примером квазикристалла с такой комбинацией элементов. Квазикристаллы содержат строительные блоки, состоящие из расположения атомов, которые в отличие от обычных кристаллов не повторяются в регулярном, похожем на кирпичную кладку узоре. В то время как обычные кристаллические структуры выглядят идентичными после перемещения (смещения в определенных направлениях), квазикристаллы имеют симметрию, которая когда-то считалась невозможной: например, некоторые имеют пятиугольную симметрию и поэтому выглядят одинаково, если их повернуть на одну пятую полного поворота.

Невозможная симметрия

Ученый-материаловед Даниэль Шехтман из Израильского технологического института впервые обнаружил такую невозможную симметрию в синтетическом сплаве в 1982 году. Он наблюдал пятиугольную симметрию при вращении в каждом из различных возможных направлений, что произошло бы, если бы его строительные блоки имели правильную форму с 20 гранями. Многие исследователи изначально ставили под сомнение выводы Шехтмана, потому что математически невозможно заполнить пространство используя икосаэдр. В конце концов Шехтман получил Нобелевскую премию по химии за это открытие в 2011 году.

Икосаэдр (от греч. ico шесть и hedra грань) это многогранник с 20 гранями. Существует бесконечно много непохожих икосаэдров, некоторые из которых имеют больше симметрий, другие меньше.

Примерно в это же время Пол Стейнхардт, физик-теоретик из Принстонского университета в Нью-Джерси, и его коллеги предположили возможность существования неповторяющихся трехмерных структур. Они имели ту же симметрию, что и икосаэдр, но были собраны из строительных блоков нескольких различных типов, которые никогда не повторялись. Физик-математик Роджер Пенроуз из Оксфордского университета и другие исследователи ранее обнаружили аналогичные закономерности в двух измерениях, которые называются мозайкой Пенроуза.

Икосаэдром называется выпуклый многогранник, грани которого это равносторонние треугольники. Любая вершина икосаэдра соединяется пятью гранями.

Стейнхардт вспоминает 1982 год, когда он впервые увидел экспериментальные данные открытия Шехтмана и сравнил их со своими теоретическими предсказаниями:

«Я встал из-за стола, подошел и посмотрел на наш рисунок, и вы не могли заметить разницы», говорит он. «Так что это был своего рода удивительный момент».

В последующие годы материаловеды синтезировали множество типов квазикристаллов, расширяя диапазон возможных запрещенных симметрий. А позже Стейнхардт и его коллеги обнаружили первый природный «икосаэдрит» в фрагментах метеорита, найденного в Восточной Сибири в России. Этот квазикристалл, вероятно, образовался в результате столкновения двух астероидов в ранней Солнечной системе.

Условия, при которых два квазикристалла образовались, вероятно, в результате столкновений между астероидами в космосе в начале Солнечной системы, сопоставимы с условиями, возникшими во время взрыва атомной бомбы.

Квазикристаллы это упорядоченные вещества, обладающие дальним порядком, но не трансляционной симметрией.

Некоторые из квазикристаллов, изготовленных в лаборатории, также были получены путем разбивания материалов на высокой скорости, поэтому Стейнхардт и его команда задавались вопросом, могут ли ударные волны от ядерных взрывов также образовывать квазикристаллы.

Это интересно: Сколько стоят самые редкие метеориты и где их купить?

Ядерная бомба и квазикристаллы

После испытания «Тринити» первого в истории взрыва ядерной бомбы, который произошел 16 июля 1945 года на полигоне Аламогордо в Нью-Мексико исследователи обнаружили обширное поле зеленоватого стекловидного материала, образовавшегося в результате разжижения песка в пустыне. Они окрестили находку тринититом.

В тот июльский день 1945 года бомба создала кратер глубиной 1,4 метра и шириной 80 метров. Достигнутая температура превысила 1500, а давление колебалось от 5 до 8 гигапаскалей. Там и родился тринитит материал, состоящий в основном из бледно-зеленого кварца и полевого шпата. Нечто подобное произошло в Хиросиме, когда большая часть города превратилась в пляжный песок.

Интересуетесь наукой и хотите быть в курсе последних открытий? Подписывайтесь на наш новостной канал в Telegram чтобы не пропустить ничего интересного!

«Тринити» первое в мире испытание технологии ядерного оружия. Взрыв бомбы был эквивалентен приблизительно 21 килотонне тротила.

Образованные в результате взрыва тринититы имели красноватые включения и по мнению исследователей были отличной почвой для поиска квазикристаллов. В течение десяти месяцев Стейнхарт и его команда нарезали кубиками все виды минералов, пока наконец не нашли крошечное зернышко квазикристалл с такой же икосаэдрической симметрией, что и в первоначальном открытии Шехтмана.

Как и большинство известных квазикристаллов, структура тринитита, по-видимому, представляет собой сплав металлоподобный материал, состоящий из положительных ионов в море электронов. Это необычно для кремния, который встречается как правило в горных породах в окисленной форме.

Несмотря на то, что сегодня ученые синтезируют в лабораториях много квазикристаллов, в природе они встречаются редко. Авторы научной работы полагают, что это может быть связано с образованием квазикристаллов, которое включает в себя «необычные комбинации элементов и их необычные расположения».

Сегодня найти тринитит можно в очень малых количествах в кратерах, оставленных после подземных взрывов ядерных бомб.

Читайте также: А вы знаете, какой была самая мощная бомба в мире?

Стейнхардт предполагает, что квазикристаллы могут быть использованы для своего рода ядерной криминалистики, поскольку они могут выявить места, где произошло скрытое ядерное испытание. Квазикристаллы могут также образовываться в других материалах, которые были получены в агрессивных условиях, таких как фульгурит материал, полученный при ударе молнии в скалу, песок или другие отложения. В общем, сага о квазикристаллах будет продолжаться.

Подробнее..

Атомная энергетика или возобновляемая какая лучше?

06.02.2022 00:16:03 | Автор: admin

Мир стремится к использованию возобновляемых источников энергии, но отказываться от атомной энергетики не хочет

Относительно обоих источников энергии ведутся споры. В двухтысячных годах экоактивисты начали борьбу с атомной энергетикой в ЕС, так как она несет серьезную потенциальную опасность для экологии и людей. В результате многие страны начали от нее отказываться в пользу возобновляемых источников энергии. Однако позже выяснилось, что возобновляемая энергия обладает своими минусами, причем достаточно серьезными. Ее себестоимость оказалось гораздо выше энергии, вырабатываемой традиционными способами. Кроме того, объемов энергии, вырабатываемой возобновляемыми источниками, в настоящее время недостаточно, чтобы покрыть потребности в электричестве европейских стран. В результате они оказались на грани энергетического кризиса. Ситуация дошла до того, что десять стран ЕС призвали Европейскую комиссию признать атомную энергетики экологически чистой, то есть присвоить ей зеленый знак. Отсюда возникает вопрос, какой все-таки источник энергии лучше и почему?

В чем преимущества атомной энергетики

Атомная энергетика, как известно, не требует сжигания углеводородов, а значит она в меньшей степени выбрасывает углекислый газ в атмосферу. Соответственно, она меньше влияет и на процессы, которые вызывают глобальное потепление климата. Именно этот аргумент приводят страны, которые хотят присвоить зеленый знак атомной энергетике. К примеру, атомные электростанции в Европе предотвращают ежегодно выбросы примерно 700 миллионов тон углекислого газа.

Атомная энергетика не требует сжигания углеводородов, в чем заключается важный ее плюс

Но это далеко не все ее преимущества. Один из главных плюсов высокая энрегоэффективность. Для сравнения, из одного килограмм урана, обогащенного до 4%, вырабатывается столько же энергии, сколько при сжигании 100 тонн качественного каменного угля или 60 тонн нефти.

Кроме того, уран-235, который используется в атомной энергетике, выгорает не полностью. Это говорит о том, что отходы можно использовать повторно. Возможно даже в будущем удастся обеспечить замкнутый топливный цикл, то есть практически безотходное производство. Таким образом, атомная энергетика на сегодняшний день это относительно чистый и мощный источник энергии.

Чем опасна атомная энергетика

Главная опасность атомной энергетики всем известна вероятность техногенных катастроф, и, как следствие, серьезное радиоактивное загрязнение. Ярким тому примером служит Чернобыль, который и по сей день несет угрозу миру. Причиной катастрофы может быть человеческая ошибка, стихийное бедствие или, к примеру, теракт.

«Мирный атом» в какой-то момент может выйти из-под контроля, как это случилось в Чернобыле

Кроме того, серьезным недостатком технологии являются радиоактивные отходы. Их переработка и захоронение это сложные и дорогостоящие процедуры. Сами атомные электростанции со временем тоже требуют вывода из эксплуатации. В случае нарушения технологии, этот процесс также связан с риском радиоактивного загрязнения окружающей среды.

Другой минус выбросы тепла в атмосферу и в водоемы, из которых берется вода в качестве охлаждающей жидкости. Она меняет свои свойства, что негативно сказывается на обитателях водоемов. Помимо этого, добыча урана также связана с причинением ущерба флоре и фауне.

Возобновляемая энергетика энергия будущего

Доля энергии, добытой при помощи возобновляемых источников, с каждым годом растет. К примеру, в 2021 году в Евросоюзе она достигла 38%. При этом стоимость постоянно падает за последние 10 лет она уменьшилась более чем на 80%. Но главное преимущество это возобновляемость, то есть она не требует никакой добычи ископаемых и никогда не закончится, в отличие от того же природного газа, которого в Европе осталось совсем немного.

Возобновляемая энергетика не закончится никогда это главный ее плюс

Данный источник энергии обладает огромным потенциалом. Одна только энергия Солнечного света может с запасом обеспечить электричеством всю планету. Кроме того, кроме солнечной энергии можно использовать энергию ветра. По подсчетам экспертов, ветроэнергетика к 2040 году может вырабатывать более трети от всей мировой энергии. При этом данный источник будет доступен и будущим поколениям.

В процессе выработки энергии не происходит выбросов углекислого газа или каких-либо отходов, которые загрязняют окружающую среду. Собственно говоря, этих плюсов вполне достаточно, чтобы говорить о возобновляемой энергетике, как об источнике энергии будущего.

Почему мир не готов отказаться от атомной энергетики

Серьезный недостаток возобновляемой энергетики потребность в дорогостоящей инфраструктуре. В частности, ветроэнергетика требует мощных дорогостоящих электросетей. Связано это с непостоянством объема вырабатываемой энергии. Проще говоря, электросети должны выдержать максимальную нагрузку, а не среднюю, как в случае с обычными электростанциями. В противном случае налетевший ураган приведет к сгоранию электросетей.

Обратная сторона этой проблемы нестабильность выработки энергии. Если нет ветра или солнечного света, то и энергия перестает вырабатываться. Также следует отметить, что назвать возобновляемую энергетику абсолютно экологичной нельзя. Для нее требуется изготовление огромного количества солнечных панелей или ветряных турбин. Производство всего необходимого оборудования, а также стройматериалов для его монтажа связано с выбросами углекислого газа в атмосферу. В то же время уже имеющихся мощностей и инфраструктуры, как уже было сказано выше, недостаточно, чтобы удовлетворить потребности в энергии стран, отказавшихся от атомной энергетики.

Возобновляемые источники энергии не являются полностью экологичными

Второй острый вопрос утилизация солнечных пластин. В настоящее время для этого используют автоклавные печи либо механические прессы. Ветряные турбины со временем также нуждаются в утилизации. Эти процессы также связаны с выбросами углекислого газа в атмосферу. Но, к счастью, все вышеперечисленные проблемы могут быть решены. Единственное, для этого понадобятся еще десятилетия. Поэтому отказываться от атомной энергетики мир еще не готов, несмотря на все ее минусы.

Подробнее..

Как работают АЭС и что будет, если их отключить?

29.08.2022 02:12:21 | Автор: admin

Для многих ядерная энергетика является жизненно важным способом борьбы с изменением климата; другие настаивают на том, что это опасно, нерентабельно и ненужно.

Атомные электростанции (АЭС) вырабатывают электрическую и тепловую энергию, являясь неотъемлемой частью повседневной жизни. Местом рождения первой в мире АЭС стал СССР: строительство началось в 1954 году, а спустя 68 лет в мире насчитывается 437 ядерных реакторов, расположенных в 32 странах. Эти больше котлы бывают разных размеров и форм и могут работать на различных видах топлива, расщепляя атомы для нагрева воды и ее преобразования в пар, который приводит в действие генераторы. Атомные электростанции считаются относительно безопасными для окружающей среды, так как не способствуют выбросам СО2 в атмосферу. Однако в 1986 году мир потрясла авария на Чернобыльской АЭС, а в 2011 году катастрофа настигла японскую станцию Фукусима-1, доказав, что называть АЭС безопасными нельзя. Но стоит ли ждать чего-то подобного в будущем? Давайте разбираться!

Откуда берется электричество?

Работа атомных электростанций обеспечивает эффективное и надежное электроснабжение по всему миру ядерная энергетика оказывает наименьшее воздействие на окружающую среду, в отличие от электростанций работающих на ископаемом топливе. Сжигание угля и нефти для выработки тепла приводит к выбросам в атмосферу вредных парниковых газов.

Принцип работы АЭС заключается в выработке тепла при расщеплении атомов и переработке урана. При этом ядерный реактор способен постоянно производить энергию и электричество.

Принцип работы АЭС строится на выработке тепла в результате ядерного распада

АЭС получают тепловую энергию от расщепления ядер атомов в активной зоне реактора. Основным топливом сегодня является уран тяжелый радиоактивный химический элемент, который содержится в большинстве горных пород. Деление атомов урана-235, например, приводит к выработке огромного количества тепла.

Чем опасны атомные электростанции?

Будучи безопасными источниками электроэнергии, АЭС, все же, могут угрожать здоровью людей и всех живых существ на Земле. Отходы, образующиеся в результате работы атомных электростанций, остаются радиоактивными от десятков до сотен тысяч лет. В то же самое время решений для их долгосрочного хранения сегодня не существует большинство ядерных отходов находятся во временных надземных хранилищах. Но так как подобных мест для хранения не хватает, промышленность обращается к другим типам хранилищ (более дорогостоящим и потенциально менее безопасным).

Еще больше интересных статей читайте на нашем канале в Яндекс.Дзен! Там регулярно выходят, которых нет на сайте!

Одной из главных проблем использования АЭС является развитие ядерно-энергетических программ, которые увеличивают вероятность распространения ядерного оружия. Это вновь возвращает нас к ответственности ученых за свои изобретения в конечном итоге использование ядерного оружия может уничтожить всю жизнь на Земле. А еще атомные электростанции являются потенциальной мишенью для террористических атак.

Крупная радиационная авария максимального 7-го уровня по Международной шкале ядерных событий произошла 12 марта 2011 года в Японии

Весомую роль также играет человеческий фактор и стихийные бедствия. Так, сильное цунами обошло механизмы безопасности нескольких электростанций в 2011 году, став причиной сразу трех аварий на Фукусиме-1, а последствия взрыва в Чернобыле привели к распространению раковых заболеваний среди населения, проживающего в непосредственной близости от АЭС.

Так как атомные электростанции должны располагаться рядом с источником воды для охлаждения реакторов, в мире не хватает мест, защищенных от засух, наводнений, ураганов, землетрясений и других потенциальных бедствий, способных привести к аварии. Ситуацию усугубляет увеличение числа экстремальных погодных явлений в результате стремительного изменения климата.

Больше по теме: Как работает АЭС? Опасны ли атомные станции?

Что будет есть отключить АЭС?

Существует ряд правил безопасного отключения АЭС, включая очистку радиоактивно загрязненных систем, конструкций станции и последующего удаления радиоактивного топлива. Окончательное закрытие атомной электростанции включает в себя деактивацию объекта (для снижения остаточной радиоактивности) и демонтаж конструкций.

Последовательный процесс отключения станции необходим для защиты сотрудников АЭС и населения близлежащих районов. Но что будет если отключить АЭС от питания не завершив вывод из эксплуатации? Исследователи полагают, что отсутствие электроэнергии не безопасно и может привести к катастрофе.

26.04.1986 года произошла самая страшная радиационная катастрофа

Чтобы не допустить перегрева на станции в случае ее обесточения, необходимо прокачивать воду исправным насосом (что, к слову, невозможно без электричества). По этой причине на каждом блоке АЭС существует резервный источник питания, например, несколько дизельных генераторов, которые автоматически запускаются при отсутствии внешнего питания.

Не пропустите: Какой бывает радиация и как от нее защититься?

Специалисты также сообщают, что если перебои с подачей электроэнергии на АЭС участятся, аварии вряд ли удастся избежать. Особенно если станция будет работать в таком режиме слишком долго.

По словам бывшего научного сотрудника Министерства обороны ядерной энергетики и технологий США Робина Граймса, отключение питания работающего реактора может привести к перегреву: «При определенных обстоятельствах перегрев ядерного реактора приведет у тому, что он фактически расплавится».

Напомним, что во время аварии на АЭС «Фукусима-1» работа одного из трех реакторов была успешно остановлена, однако системы резервного питания и охлаждения не сработали. Это, как мы знаем сегодня, привело к частичному плавлению всех реакторов станции, а основной причиной аварии стали землетрясение и цунами, которые бушевали в стране несколько дней.


С загрязнённых территорий было эвакуировано около 164 тысяч человек.

Тем не менее самой страшной аварией по-прежнему является взрыв на Чернобыльской АЭС. Среди причин произошедшей аварии эксперты выделяют как наличие неисправностей, так и ошибок в эксплуатации станции. Сам взрыв унес жизни более четырех тысяч человек, а количество пострадавших от радиации до сих пор окончательно неизвестно.

Сегодня зона отчуждения Чернобыльской АЭС является не пригодной для жизни и останется таковой очень и очень долго. Как ранее рассказывал мой коллега Артем Сутягин, Чернобыль по-прежнему является серьезной угрозой для человечества.

Лучевая болезнь

Первые описания лучевой болезни появились после бомбардировок японских городов Хиросима и Нагасаки. Врачам пришлось иметь дело с неизвестным заболеванием, симптомы которого внезапно появлялись у некоторых пациентов без видимых повреждений. Сегодня мы знаем, что пострадавшие японские граждане страдали отсроченными последствиями радиационного облучения.

Острая лучевая болезнь характеризуется тошнотой, рвотой, диареей, анорексией, головной болью, недомоганием и учащенным сердцебиением (тахикардией). Подробнее о том как протекает эта болезнь и как ее лечить недавно рассказывал мой коллега Андрей Жуков, рекомендую к прочтению

Лучевая болезнь заболевание, возникающее в результате воздействия различных видов ионизирующих излучений

При небольших дозах облучения дискомфорт проходит в течение нескольких часов или дней, однако при мощном облучении радиация проникает в большую часть тела всего за несколько минут, нарушая работу физиологических систем и разрушая клеточные структуры. Последствия радиационного облучения сказываются на делении клеток, что намного опаснее для детей, чем для взрослых. Увы, за блага цивилизации и комфорт приходится платить, но стоят ли они подобного риска?

Подробнее..

Как защитить жилье от радиационной катастрофы

06.11.2022 16:05:31 | Автор: admin

Правильно подготовив жилье к радиационной катастрофе, можно избежать облучения смертельной дозой радиации

Полностью защититься от радиации невозможно, так как она является частью нашей жизни. Космическое излучение, радионуклиды, которые присутствуют в различных материалах и даже в воде, а также ряд веществ в недрах нашей планеты создают естественный радиационный фон. Также определенное излучение имеет сжигаемое топливо, мусорные свалки и т.д. Однако радиация от этих всех источников обычно находится в пределах 0,2 мкЗв/час, или 20 мкР/час, и считается безопасной для человека. Но никто из нас не застрахован от радиационной катастрофы, при которой уровень радиации может превышать норму в десятки, сотни или даже тысячи раз. Как правило, в такой ситуации население эвакуируют, однако не всегда эвакуация происходит своевременно. Поэтому важно знать, как защитить свою квартиру или дом от радиации, чтобы избежать чрезмерного заражения сразу после катастрофы, то есть в самый опасный период.

Ядерная война и другие причины радиационной катастрофы

Будет ли ядерная война между Россией и США? Сейчас на этот вопрос сложно ответить. Остается надеяться на благоразумие политиков, однако, как мы рассказывали ранее, исключать такую вероятность нельзя. Но ядерная война 2022 далеко не единственная угроза, нависшая над человечеством.

Несмотря на высокий запас прочности атомных станций, они все равно представляют угрозу в случае террористического акта. Кроме того, атомные станции и сами по себе далеко не безопасны. Достаточно вспомнить Чернобыль или Фукусиму.

Авария на Фукусиме напомнила миру об опасности ядерной энергетики

Также радиация теоретически может прийти оттуда, откуда мы ее вообще не ждем из космоса. Как мы рассказывали ранее, ученые не исключают вероятность мощной радиационной бури, которая может обрушиться из космоса. Такое уже неоднократно случалось с периодичностью 1 раз в 1000 лет.

Можно ли защитить дом от радиации

Можно ли полностью защитить свое жилье от радиации? На это вряд ли стоит рассчитывать, но зато можно минимизировать воздействие радиации на организм, и таким образом избежать развития лучевой болезни. Больше всего шансов избежать радиационного излучения у жильцов средних этажей. Они удалены от крыши и поверхности земли, на которой скапливаются радиационные осадки, а также оседает радиационная пыль.

В квартире или доме наиболее безопасными являются комнаты, которые не имеют окон и отделены от внешних стен внутренними перегородками. Чем больше барьеров из бетона или кирпича между вами и улицей, тем надежнее защита от радиации. Однако помимо выбора безопасного помещения, все же стоит выполнить некоторые действия, чтобы сделать жилье более безопасным.

В случае ядерной катастрофы необходимо плотно закрыть окна и двери

В первую очередь необходимо плотно закрыть все окна и двери. Желательно при этом герметизировать щели. К примеру, их можно проклеить скотчем или даже бумагой, как это когда-то делали наши бабушки и дедушки, заклеивая оконные щели на зиму. Также не лишним будет герметизировать вентиляционные отверстия. Решетки можно заклеить скотчем, а большие отверстия забить тряпками.

надо сказать, что от гамма-излучения частично защищает облицовка из стали. Поэтому металлический сайдинг на стенах уменьшит уровень радиации, пронимаемый в помещение. Это можно учесть при выборе материала для отделки фасада дома. А тем, кто хочет создать собственный домашний бункер, стены следует облицевать свинцовыми пластинами.

Измерить уровень радиации на улице или в помещении можно при помощи дозиметра

Уровень радиации высокий что делать

Если радиационная катастрофа застала вас на улице, необходимо как можно быстрее зайти внутрь. При этом всю одежду следует снять при входе в помещение и оставить снаружи. Затем надо как можно быстрее принять душ, тщательно вымыв при этом тело и волосы. Если воды нет, следует обтереть тело влажным полотенцем или салфетками.

Самое главное избегать попадания радиоактивных веществ на открытые участки тела. А еще более опасным является проникновение радиоактивных элементов внутрь. Вот почему важно герметизировать помещение. Это позволит избежать попадания радиоактивной пыли внутрь дыхательных путей. Разумеется, нельзя потреблять воду из крана и открытых источников.

Обязательно подписывайтесь на ЯНДЕКС.ДЗЕН КАНАЛ, где вас ожидают поистине захватывающие и увлекательные материалы.

Пить можно исключительно бутилированную воду, которая находилась внутри помещения. Поэтому подготовиться к катастрофе, хотя бы минимально, следует заранее. Подробно о том, как это сделать мы рассказывали ранее.

Подробнее..

Новые мини-реакторы можно будет строить даже рядом с домами

25.01.2023 16:02:01 | Автор: admin
Новые мини-реакторы можно будет строить даже рядом с домами. Новые модульные реакторы настолько безопасны, что их можно строить среди домов. Фото.

Новые модульные реакторы настолько безопасны, что их можно строить среди домов

Ранее мы рассказывали, что новым шагом в развитии ядерной энергетики являются малые модульные реакторы мощностью до 300 МВт. Они гораздо более безопасные, чем классические АЭС, и при этом более экологичные. Поэтому их рассматривают даже в качестве альтернативы возобновляемым источникам энергии. По мнению ряда экспертов, использование малых реакторов поможет снизить выбросы парниковых газов. Нельзя сказать, что они уже получили широкое распространение, однако их популярность во всем мире растет с каждым годом. Но особенно сильно ситуация может измениться после появления реакторов еще меньшей мощности. На днях комиссия по ядерному регулированию (NRC) в США сертифицировала новый проект усовершенствованного модульного реактора от компании NuScale Power, мощностью которого составляет всего 50 мегаватт. Его уже назвали шагом вперед к будущему экологически чистой и доступной энергии.

Новые мини-реакторы для небольших компаний

Ранее в США уже были одобрены шесть проектов модульных мини-реакторов компании NuScale Power, но это были большие традиционные легководные реакторы большой мощности. Нынешний же проект ориентирован на то, чтобы сделать мини-реакторы еще более доступными. Теперь их смогут использовать для своих нужд даже небольшие компании и коммунальные предприятия. То есть теперь компании смогут сами себя обеспечивать электроэнергией.

Благодаря усовершенствованной конструкции электростанции NuScale VOYGR стали более безопасными. Легководный реактор, который лежит в их основе, даже в случае внештатной ситуации или аварии не причиняет вреда окружающей среде. Поэтому электростанции могут быть развернуты в жилых районах населенных пунктов.

Новые мини-реакторы для небольших компаний. Новые реакторы ориентированы на коммунальные хозяйства и небольшие компании. Фото.

Новые реакторы ориентированы на коммунальные хозяйства и небольшие компании

Напомним, что модульный мини-реактор представляет собой практически готовое решение, которое собирается на строительной площадке из отдельных модулей. Благодаря этому значительно сокращается время на строительство электростанции. Принцип работы у них совсем не такой, как у больших АЭС, так как энергия, выделяемая в результате расщепления атомного ядра преобразуется в тепловую энергию (нагревает воду), и только после этого преобразуется в электрическую энергию.

Мини-реакторы смогут альтернатива возобновляемым источникам энергии?

Затраты на строительство даже такого маленького реактора мощностью 50 мегаватт значительно выше, чем на установку ветряков или солнечных панелей. Поэтому скептики выражают сомнение относительно конкурентоспособности данного решения. Однако Дайан Хьюз, вице-президент компании NuScale, уверен, что реакторы смогут составить серьезную конкуренцию возобновляемым источникам энергии.

Электростанция NuScale VOYGR является более стабильным источником энергии, так как не зависит ни от Солнца, ни от ветра. Кроме того, не требовательна к обслуживанию. Ядерное топливо в нее загружается гораздо реже, чем в обычные АЭС и расходуется полностью, то есть без отходов. Кроме того, NuScale VOYGR практичнее альтернативных источников энергии. К примеру, коммунальное хозяйство или предприятие не сможет установить в черте города ветряки или необходимое количество солнечных панелей.

Мини-реакторы смогут альтернатива возобновляемым источникам энергии? Модульные мини-реакторы малой мощности являются альтернативой возобновляемым источникам энергии. Фото.

Модульные мини-реакторы малой мощности являются альтернативой возобновляемым источникам энергии

Мини-реактор же не требует много пространства и, как было сказано выше, может быть установлен в черте города даже среди домов. Кроме того, по словам Дайана Хьюза, в последнее время по ряду причин увеличилась стоимость энергетических проектов, таких как солнечные и ветровые станции, что делает мини-реакторы еще более конкурентоспособными.

Министерство энергетики США также позитивно смотрит на данный проект. По словам правительства, он представляет собой новый экологически чистый источник энергии, который может снабдить страну энергией. Как сообщается в заявлении, это лучшая инновация, которая только начинает набирать обороты.

Мини-реакторы смогут альтернатива возобновляемым источникам энергии? Использование модульных мини-реакторов позволит уменьшить выбросы СО2 в атмосферу. Фото.

Использование модульных мини-реакторов позволит уменьшить выбросы СО2 в атмосферу

Перспектива мини-реакторов

Как сообщает издание Associated Press, компания NuScale уже подписала 19 соглашений в США и за пределами страны о развертывании своей технологии малых реакторов. К примеру, сейчас стартует первая фаза инженерно-проектных работ по сооружению мини-реактора NuScale в Румынии.

Не забудьте подписаться на ЯНДЕКС.ДЗЕН КАНАЛ, где мы подготовили для вас поистине захватывающие и увлекательные материалы.

По словам представителей самой компании, небольшие модульные реакторы больше не являются абстрактной концепцией. Они уже реальны и полностью готовы к развертыванию. Причем в ближайшее время ассортимент электростанций малой мощности будет расширен еще больше. В настоящее время компания NuScale подала еще одону заявку в NRC на утверждение более крупного реактора мощностью 77 мегаватт.

Напоследок напомним, что ученым удалось добиться определенных успехов в области термоядерного синтеза. Правда, до реализации технологии все еще очень далеко, но, если все же удастся ее освоить, это будет колоссальный прорыв в области энергетики, о чем мы рассказывали ранее.

Подробнее..

Радиоактивный пляж как на Испанию упали водородные бомбы?

11.03.2023 16:19:09 | Автор: admin
Радиоактивный пляж: как на Испанию упали водородные бомбы? В 1966 году, через два месяца после падения на побережье Испании четырех водородных бомб, в Паломаресе устроили народные купания. Фото.

В 1966 году, через два месяца после падения на побережье Испании четырех водородных бомб, в Паломаресе устроили народные купания

17 января 1966 года над городом Паломарес столкнулись два американских бомбардировщика с ядерным оружием на борту. Катастрофа привела к гибели семерых человек и падению на юго-восточное побережье Испании четырех водородных бомб. И хотя взрыва не произошло, у двух бомб сработали детонаторы, что привело к заражению почвы радиоактивным плутонием-239. Для ликвидации аварии в провинцию Альмерия прибыли сотни солдат США, однако операцию Broken Arrow («Сломанная стрела») едва ли можно назвать успешной спустя 57 лет земля в Паломаресе по-прежнему радиоактивна, а Испания вновь обращается к США с просьбой вывезти из страны десятки тысяч кубометров загрязненной почвы (в общей сложности речь идет о 50 000 кубометрах зараженной земли). О том, что уровень радиации в регионе по-прежнему высокий, стало известно в 2007 году. Тогда же правительство Испании ограничило доступ к пострадавшей территории, запретив использование земли для сельскохозяйственной деятельности и развития. Но как получилось, что ликвидация ядерной катастрофы длится более полувека? Давайте разбираться!

Водородные бомбы в Паломаресе

С 1936 по 1975 годы Испания находилась под управлением диктаторского режима Франсиско Франко. После столкновения бомбардировщиков в 1966 году Испанское государство (Estado Espaol) и США старались преуменьшить значение инцидента. Так, всего через два месяца после катастрофы испанские власти устроили массовое купание на пляже Мануэля Фраги, а затем, совместно с правительством США, раздали жителям Паломареса и Вильярикоса (еще одной пострадавшей провинции) сертификаты и компенсации.

Отметим, что позиция США относительно инцидента оправдывалась разгаром Холодной войны, а Франксисткая Испания опасалась ущерба зарождающейся индустрии туризма (впрочем, ничего нового). Для ликвидации аварии на место крушения было направлено около 1600 военнослужащих США, которые вывезли около 1400 тонн загрязненной почвы, отправив их на объект в Южной Каролине для хранения.

Водородные бомбы в Паломаресе. Испанские рабочие смотрят на обломки, разбросанные по склону холм, во время поиска пропавшей водородной бомбы в январе 1966 года. Фото.

Испанские рабочие смотрят на обломки, разбросанные по склону холм, во время поиска пропавшей водородной бомбы в январе 1966 года.

Это интересно: Ядерная энергетика: как утилизировать уран?

Впоследствии правительство Испании опубликовало документы, согласно которым пострадавшие территории полностью обеззаражены, местные жители получили около 900 сертификатов, а американские военные забрали 4810 канистр (по 242 литра каждая), заполненных землей и радиоактивными отходами. Однако высокий уровень радиации в регионе, зафиксированный в 2007 году, доказал, что операция «Сломанная стрела» с задачей не справилась радиоактивный мусор, захороненный в канавах, стал причиной загрязнения не менее 40 гектаров.

Самое опасное оружие на Земле

О том, что ядерное оружие может уничтожить цивилизацию, сегодня знают все. Для этого участники «Манхэттенского проекта» (проекта США по созданию атомной бомбы) выступили за ядерное разоружение, о чем в 1947 году сообщили на страницах журнала Чикагского университета «Бюллетень ученых атомщиков». Чтобы объяснить широкой общественности необходимость отказа от ядерного оружия, ученые использовали метафорические Часы судного дня, полночь на которых символизирует ядерную катастрофу.

Подробнее о том, что такое Часы судного дня и кто принимает решение о переводе стрелки мы рассказывали здесь, не пропустите!

Самое опасное оружие на Земле. До полуночи осталось всего 90 секунд. Фото.

До полуночи осталось всего 90 секунд

Увы, но осознать последствия применения атомного оружия удалось лишь после бомбардировки японских городов Хиросима и Нагасаки в августе 1945 года, столкновения бомбардировщиков США над Испанией в 1966 году и крупнейшей аварии на Чернобыльской АЭС весной 1986 года. Последствия крупнейшей в мире катастрофы специалисты устраняют до сих пор. Напомним, что в ходе ликвидации аварии погибли десятки тысяч человек, но самым страшным последствием оказалось влияние облучения.

Напомним, что в природе встречаются радионуклиды элементы, излучающие радиацию. Их воздействие заражает все окружающие объекты. Так, облучение клеток живых организмов лишает их способности к восстановлению и может стать причиной гибели и мутаций в ДНК, что приводит к развитию рака. После аварии на Чернобыльской АЭС в Европе было зафиксировано не менее 10 тысяч случаев рака щитовидной железы (и по прогнозам ожидается еще не менее 50 000 случаев).

Самое опасное оружие на Земле. В первые несколько часов после облучения пациент испытывает общее недомогание, тошноту или рвоту, ощущение сухости во рту, головную боль. Фото.

В первые несколько часов после облучения пациент испытывает общее недомогание, тошноту или рвоту, ощущение сухости во рту, головную боль.

Самое страшное, все же, происходит из-за высоких доз радиации, полученных при контакте с зараженными материалами. В зависимости от вида поражающего излучения, симптомы лучевой болезни могут включать тошноту, потерю веса, ломоту в теле, боль в животе, рвоту и диарею. В острых случаях у пациентов начинают отмирать целые группы клеток, приводя к отказу органов и последующей смерти.

Больше по теме: Лучевая болезнь: все, что нужно знать каждому

Что такое радиоактивные отходы?

Опасность для жизни и здоровья также представляют радиоактивные отходы (РАО, radioactive waste) ядерные материалы и радиоактивные вещества, дальнейшее использование которых не предусматривается. Как правило РАО хранятся в специальных местах захоронения так называемых могильниках, которые надежно изолируют их от контакта с окружающей средой.

Как говорится на сайте НО РАО, наиболее опасные радионуклиды содержатся в отработавшем ядерном топливе (ОЯТ): тепловыделяющие элементы и сборки, в которые они помещаются, излучают даже сильнее свежего ядерного топлива и продолжают выделять тепло.

Что такое радиоактивные отходы? В группу РАО попадают любые объекты, длительно контактирующие с ионизированным излучением. Как правило это детали работавших с рудой и топливом машин, провода, фильтры и даже спецодежда. Фото.

В группу РАО попадают любые объекты, длительно контактирующие с ионизированным излучением. Как правило это детали работавших с рудой и топливом машин, провода, фильтры и даже спецодежда.

При этом более 95% РАО представляют собой ценный ресурс (с содержанием урана-235 и 238, плутоний и других изотопов, используемых в медицине и научной деятельности) и извлекаются на специализированных предприятиях. Отметим, что Международное агентство по атомной энергии (МАГАТЭ) разделяет РАО на несколько категорий (твердые и жидкие, низкоактивные и высокоактивные). Для каждой категории прописаны собственные требования к обращению.

К низкоактивным относятся такие изотопы как цезий-137 и стронций-190 (с периодом полураспада около 30 лет), которые содержатся в отходах обычных атомных электростанций. И хотя уровень риска для здоровья от низкоактивных отходов не такой высокий, как в результате взрыва бомбы или ядерного реактора на АЭС, неискушенные террористы, готовые смириться с разоблачением и смертью, могли бы использовать ядерные отходы для отравления крупных городов.

Что такое радиоактивные отходы? Существуют несколько основных этапов обработки ядерных отходов. Фото.

Существуют несколько основных этапов обработки ядерных отходов

Двадцать периодов полураспада эквивалентны 600 годам времени, в течение которого отходы представляют опасность, отмечают специалисты.

Плутоний-239

Но вернемся к плутонию-239 чрезвычайно токсичному изотопу, период полураспада которого составляет 24 тысячи лет (!). Открытие изотопа физиками Калифорнийского университета состоялось в 1941 году, во время бомбардировки мишени из чистого урана-238 разогнанными до высоких энергий нейтронами. Появился этот нестабильный изотоп при распаде нептуния-239, а за его открытие в 1951 году была присуждена Нобелевская премия по химии.

В 1942 году ученым удалось получить чистое соединение плутония. Позже стало известно, что этот изотоп существует в природе его обнаружили в урановых рудах (в частности в рудах, залегах в Конго). Сегодня плутоний активно используется в ядерной промышленности в качестве топлива для питания ядерных реакторов (фактически он входит в состав МОКСтоплива смеси оксида урана и плутония) и для изготовления ядерного оружия.

Читайте также: Как работают АЭС и что будет, если их отключить?

Плутоний-239. Плутоний тяжелый хрупкий высокотоксичный радиоактивный металл серебристо-белого цвета. Фото.

Плутоний тяжелый хрупкий высокотоксичный радиоактивный металл серебристо-белого цвета

Поскольку плутоний испускает альфа-частицы, он наиболее опасен при вдыхании и оседает в легочной ткани, что приводит к рубцеванию легких и раку. Из легких изотоп может попасть в кровоток, а затем в почки. Циркулируя по организму, плутоний-239 концентрируется в костях, печени и селезенке, подвергая органы воздействию альфа-частиц.

Радиоактивный пляж в Испании

О том, что не менее 40 гектаров земли в Паломаресе заражено плутонием-239, сообщает испанская El Pais. Издание отмечает, что проблема заключается не в очистке территории, а в том, куда попадает загрязненная земля. План ликвидации, разработанный в 2010 году, предусматривал уплотнение и фильтрацию 6000 кубометров, а также поиск могильника, поскольку в Испании места для хранения РАО нет.

Радиоактивный пляж в Испании. Один из американских катеров, участвовавших в очистке района от радиоактвиного загрязнения в 1966 году. Фото.

Один из американских катеров, участвовавших в очистке района от радиоактвиного загрязнения в 1966 году.

В 2015 году Испания и США договорились (без каких-либо юридических обязательств), о том, что Испания возьмет на себя очистку, а США заберет радиоактивные отходы. Однако соглашение так и не было разработано, а Паломарес остается испанской «зоной отчуждения». По этой причине МИД Испании обратился к США с официальным запросом об урегулировании ситуации, однако официальный ответ американские власти пока не предоставили.

Хотите всегда быть в курсе новостей из мира науки и высоких технологий? Подписывайтесь на наш канал в Яндекс.Дзен там регулярно выходят статьи, которых нет на сайте!

СМИ также отмечают, что политическая нестабильность не единственная причина столь продолжительной ядерной саги: в общей сложности операция займет от 12 до 24 месяцев, а ее стоимость оценивается в 640 миллионов евро.

Радиоактивный пляж в Испании. Побережье Паломареса по-прежнему радиоактивно (спустя 57 лет). Фото.

Побережье Паломареса по-прежнему радиоактивно (спустя 57 лет)

Как в августе 2022 года заявил министр администрации президента Феликс Боланьос, исполнительная власть «работает в экономической и дипломатической сферах, чтобы найти решение» проблемы Паломареса.

Отметим также, что на Земле существует немало территорий, небезопасных для жизни из-за радиации. Среди них Маршалловы Острова, Хэнфордский комплекс в США и Фукусима в Японии. Подробнее о каждом из этих мест мы рассказывали в этой статье, рекомендуем к прочтению.

Подробнее..

В Китае запустят первый жидкосолевой ториевый реактор что это такое и в чем его преимущества

20.06.2023 02:20:52 | Автор: admin
В Китае запустят первый жидкосолевой ториевый реактор что это такое и в чем его преимущества. В Китае запустят первый ториевый ядерный реактор. Фото.

В Китае запустят первый ториевый ядерный реактор

Шанхайский институт прикладной физики в Китае получил первую в стране лицензию на эксплуатацию жидкосолевого ториевого реактора, который был построен в еще в 2021 году в городе Увэй. Он отличается от обычных реакторов теплоносителем, а также ядерным топливом вместо урана в нем используется жидкое топливо на основе тория. Надо сказать, что подобного типа реакторы уже существуют в мире, но они имеют некоторые недостатки. При строительстве китайского реактора все предыдущие ошибки были учтены. Теперь, если тестирование пройдет успешно, ядерная энергетика вскоре может стать еще более доступной, эффективной и безопасной.

Что такое реактор на расплавах солей

В обычных ядерных реакторах, как известно, в качестве охлаждающей жидкости используется вода. У жидкосолевых же аналогов вместо воды применяются расплавы солей, то есть жидкую смесь расплавленных солей. Солевой теплоноситель способен работать при более высокой температуре но с более низким давлением в системе. То есть в ней уменьшается механическое напряжение, благодаря чему повышается безопасность и долговечность реактора.

Обычно такие реакторы работают на основе жидкого ядерного топлива, которое является одновременно и теплоносителем. Благодаря этому упрощается конструкция реактора. Кроме того, данное решение позволяет менять топливо в реакторе, не останавливая его. В качестве солей обычно используются химическое соединения фтора или хлора с радиоактивными веществами, такими как торий, уран, плутоний и др.)

Что такое реактор на расплавах солей. Ториевый реактор работает на жидкосолевом доступном топливе. Фото.

Ториевый реактор работает на жидкосолевом доступном топливе

Что представляет собой китайский ториевый реактор

В основном все существующие жидкосолевые реакторы в качестве охлаждающей жидкости используют расплавленные металлы, а именно натрий. Они обладают всеми вышеперечисленными преимуществами, но имеют серьезные минусы, в результате которых не получили широкого распространения.

Дело в том, что натрий отличается высокой реакционной способностью. По этой причине в российский реакторах за последние 17 лет произошло 27 утечек, 14 из которых приводили к возгоранию. Новый же китайский реактор будет работать с использованием более безопасного теплоносителя, а именно соли фторида лития-бериллия. Эта жидкость может работать при температуре 650 градусов в течение 10 лет.

Но самое главное, что в качестве ядерного топлива используется торий, а точнее жидкий фторид тория, состоящий из топливных солей. Как сообщает Всемирная ядерная ассоциация (WNA), тория в мире гораздо больше, чем урана. К примеру, в одном только Китае, по оценкам экспертов, тория достаточно для ядерной энергетики на 20 тысяч лет.

Что представляет собой китайский ториевый реактор. Торий доступный, слаборадиоактивный металл. Фото.

Торий доступный, слаборадиоактивный металл

Однако использовать его можно только в сочетании с делящимся материалом, таким как переработанный плутоний. Обработка плутония делала использование этого топлива нерентабельным. Теперь же благодаря использованию смеси доступных жидких солей, ядерное топливо станет максимально доступным.

Принцип работы ториевого реактора

В новом реакторе происходит реакция изотопа тория-232 в процессе облучения его вспомогательным радиоактивным топливом (урана-235). В результате образуется уран-233, то есть обогащенный уран. Дальше происходит обычная ядерная реакция, как в традиционных реакторах расщепляется уран и при этом выделяется тело.

Температура солевого раствора нагревается до 450-650 C и по тепловому контуру передается воде. Последняя превращается в пар и вращает турбину электростанции.

Принцип работы ториевого реактора. В Китае планируют построить мощные ториевые реакторы. Фото.

В Китае планируют построить мощные ториевые реакторы

Надо сказать, что реактор является экспериментальным. На нем будет происходить изучение безопасности данной технологии и тестироваться стабильность работы, технология дозаправки и непрерывного удаления газов. Если испытания пройдут успешно, Китай планирует построить ректоры гораздо большей мощности. Использование таких реакторов может стать новой вехой в развитии ядерной энергетики. Она станет еще более дешевой и безопасной, то есть лишится основных недостатков в сравнении с зеленой энергетикой.

Переходите по ссылке на наш ЯНДЕКС.ДЗЕН КАНАЛ. Мы подготовили для вас множество интересных, захватывающих материалов посвященных науке.

При этом в отличие от малых модульных реакторов, ториевые реакторы способны вырабатывать большее количество энергии. Поэтому интерес к данной технологии также проявила Япония и США. К примеру, в 2021 году американские компании TerraPower и PacifiCorp предложили строительство экспериментального реактора вместо старой заброшенной угольной электростанции.

Подробнее..

Как предупредить людей будущего о радиоактивных отходах самые странные идеи

04.06.2024 18:18:57 | Автор: admin
Как предупредить людей будущего о радиоактивных отходах самые странные идеи. У ученых есть несколько впечатляющих идей о том, как предупредить людей будущего об опасности некоторых мест на Земле. Фото.

У ученых есть несколько впечатляющих идей о том, как предупредить людей будущего об опасности некоторых мест на Земле

В некоторых местах Японии можно встретить возведенные столетия назад гигантские каменные плиты, которые предупреждают современных людей об опасности цунами. Они устанавливались древними японцами в местах, где когда-либо происходили разрушения из-за огромных волн, вызванных землетрясениями. Увидев эти камни, потомки древних жителей Японии понимали, что в этих местах лучше не строить дома. Самая новая из этих предупредительных табличек была установлена относительно недавно, в 1933 году. На так называемых каменных плитах о цунами люди писали разную информацию, начиная от количества жертв цунами и заканчивая простыми предупреждениями о необходимости строить сооружения выше этих мест. Смотря на эти предупреждения от людей прошлого возникает очевидный вопрос: как мы можем обезопасить людей будущего от, скажем, мест утилизации ядерных отходов?

Каменные плиты о цунами

Один из древних камней, предупреждающих о возможных стихийных бедствиях, находится недалеко от деревни Анеоши в японской префектуре Ивате. Местные жители считают, что именно благодаря этим предупредительным камням им удалось избежать больших жертв в 2011 году. Напомним, что в этот год в Японии произошло землетрясение магнитудой от 9,0 до 9,1. Землетрясение вызвало цунами, которое погубило 15 тысяч человек. Если бы не упомянутый камень, под огромными волнами могли оказаться еще больше волн.

Каменные плиты о цунами. Одна из предупредительных плит в Японии. Источник изображения: wikimedia.org. Фото.

Одна из предупредительных плит в Японии. Источник изображения: wikimedia.org

Такие камни установлены в самых разных точках побережья Японии, их количество исчисляется сотнями. Некоторые из них были установлены 600 лет назад, а есть и те, что поставлены чуть более сотни лет назад одним из них и является камень у деревни Анеоши. Высота некоторых камней достигает трех метров, то есть они видны издалека. Предки современных японцев всеми способами старались сделать так, чтобы их потомки поняли их послания. Например, на камнях были высечены надписи вроде Жилища на возвышенности это мир и гармония наших потомков. Помните об опасности цунами. Не стройте никаких домов ниже этой точки.

Каменные плиты о цунами. Камень предупреждающий о цунами на японском острове Хонсю. Источник изображения: travelask.ru. Фото.

Камень предупреждающий о цунами на японском острове Хонсю. Источник изображения: travelask.ru

По словам японского специалиста по истории стихийных бедствий Итоко Китахары, камни цунами это предупреждения, передаваемые из поколения в поколение, которые призывают потомков избегать тех же опасностей, что и их предки. Об этом он в 2011 году рассказал изданию The New York Times.

Статья в тему: Какая высота была у самого большого цунами

Предупреждение о ядерных отходах

В будущем у людей явно будут технологии для выявления грядущих стихийных бедствий. О нынешних системах предсказания землетрясений вы можете почитать в нашей статье Как предсказать землетрясение и что нужно делать, когда оно начнется.

А как предупредить наших потомков о других опасностях, например, о наличии под землей ядерных отходов? Ведь если люди будущего случайно их раскопают, это может привести к ужасным последствиям. Например, они могут пострадать от радиационного облучения, а земля и вода могут загрязниться отходами.

Предупреждение о ядерных отходах. Одно из мест утилизации ядерных отходов. Источник изображения: news.rambler.ru. Фото.

Одно из мест утилизации ядерных отходов. Источник изображения: news.rambler.ru

В местах с ядерными отходами уже стоят предупредительные таблички. Но гарантии того, что они сохранятся спустя сотни лет, нет. Также специалисты создают базы данных и документы, содержащие информацию о местонахождении ядерных отходов и рисках, связанных с ними. Но они со временем тоже могут быть утеряны. Необходимы более долговечные предупреждения.

К тому же, спустя сотни и тем более тысячи лет наши потомки могут попросту не понять эти знаки. Сегодня мы раскапываем древние гробницы с загадочными надписями, и чтобы расшифровать их, нам нужно много времени. В начале 2024 года археологи нашли в Испании бронзовую руку с надписями на древнем языке. И они расшифровали текст с очень большим трудом.

Радиоактивные места на Земле

В 1993 году ученые из Сандийской национальной лаборатории предложили весьма необычный способ предупреждения людей будущего о радиоактивной опасности. По их мнению, местам утилизации ядерных отходов можно придать предельно устрашающий вид. Например, ландшафт можно обставить обломками и шипами, торчащими под разными углами.

Радиоактивные места на Земле. Устрашающее место утилизации ядерных отходов по версии нейросети. Фото.

Устрашающее место утилизации ядерных отходов по версии нейросети

Также они предложили оставить для людей будущего текстовые послания. Отрывок из предлагаемого сообщения гласит:

Это место не является почетным, здесь не увековечивается ни одно высокочтимое деяние, здесь нет ничего ценного. То, что находится здесь, было опасным и для нас. Это сообщение является предупреждением об угрозе.

Возможно, эта идея может показаться слишком фантастической. К тому же, люди будущего все равно могут не понять то, что мы хотели передать. Есть и другой вариант отправки предупреждения для следующих поколений людей.

Читайте также: Самые радиоактивные места на Земле

Атомное священство с экспертами по радиации

Американский лингвист Томас Себеок предложил создать Атомное священство. По его плану, нужно создать сообщество специалистов по атомной энергии и радиации, основной целью которой является передача знаний о потенциальной опасности между поколениями. Подробнее о его задумке вы можете почитать в материале Как спрятать ядерные отходы на десять тысяч лет?.

Атомное священство с экспертами по радиации. Возможно, о местах с ядерными отходами людей предупредят члены Атомного священства. Фото.

Возможно, о местах с ядерными отходами людей предупредят члены Атомного священства

Кто такие радиационные кошки

Также у ученых имеется фантастическая идея по созданию радиационных кошек. Они предлагают вывести породу животных, которые меняют цвет при приближении к местам с ядерными отходами. Но как создать таких кошек еще не ясно, к тому же это можно считать насилием над животными.

Кто такие радиационные кошки. А может быть, ученые создадут породу радиационных кошек. Фото.

А может быть, ученые создадут породу радиационных кошек

Понравилась статья? Подпишитесь на наш Дзен-канал, там много всего интересного!

Какая из предложенных идей вам кажется самой реалистичной? Может, вы сможете придумать свои варианты? Пишите в нашем Telegram-чате.

Подробнее..

Что делать во время ядерного взрыва?

28.02.2022 04:09:41 | Автор: admin

Грибовидное облако образуется в результате взрыва ядерной бомбы

Существует множество сценариев нашего общего будущего. К сожалению, сегодня мы должны рассмотреть самые худшие варианты развития событий, включая начало ядерной войны. Изобретение атомной бомбы в прошлом столетии навсегда изменило жизнь тех ученых, которые были причастны к ее созданию и в России и в США. Осознавая чудовищные последствия своего открытия, ученые единым фронтом выступили за ядерное разоружение. Впоследствии участники «Манхеттонского проекта» создали те самые Часы судного дня метафорические часы, полночь на которых означает ядерную катастрофу. Сегодня стрелка часов замерла на отметке без ста секунд полночь, подчеркивая то, как хрупок мир и как легко мы можем его потерять. Мирное небо над головой, кажется, больше таким не является. Прямо сейчас идут разговоры о применении ядерного оружия. И раз ситуация выглядит, мягко скажем, не очень, давайте вспомним о том, что делать, если это смертоносное оружие будет применено.

Составьте семейный план связи в экстренных случаях: поделитесь им с близкими и отрабатывайте его, чтобы ваша семья знала, как вести себя в чрезвычайной ситуации.

История ядерного оружия

История создания ядерного оружия началась в 1939 году. Именно тогда физик Фредерик Жолио-Кюри открыл расщепление ядра урана при поглощении им нейтронов и запатентовал конструкцию урановой бомбы. Затем в 1953 году к созданию атомного оружия подключился Советский Союз и в конечном итоге овладел водородной бомбой.

Академик Андрей Сахаров, который принимал непосредственное участие в разработке смертельного оружия, впоследствии покинул СССР и до конца своих дней выступал за ядерное разоружение. Однако советского диссидента, как и участников Манхэттенского проекта, слушали не все. И чем дальше от нас становилось прошлое, тем больше стран захотели превратиться в ядерные державы.

И раз сегодня обстановка в мире является неспокойной, никто не может исключить самый худший вариант развития событий, а именно что делать, если кто-то решит нажать на красную кнопку?

Радиация потоки фотонов и других элементарных частиц или атомных ядер, способные ионизировать вещество.

Начнем с того, что ионизирующее излучение или радиация это энергия, которая исходит от источника и распространяется в пространстве со скоростью света. Эта энергия обладает электрическим полем и связанным с ним магнитным полем, создавая волнообразный эффект.

Сегодня мировой ядерный арсенал стал намного мощнее чем в годы Холодной войны. Современные боеголовки могут нанести в тысячи раз больший ущерб, чем те, что были сброшены на Хиросиму и Нагасаки.

Несколько лет назад исследователи разработали новую математическую модель, которая позволит выжить как можно большому количеству людей. Разработчик модели, физик Майкл Диллон из Ливерморской национальной лаборатории Лоуренса в Калифорнии, приступил к разработке после того, как правительство США призвало провести дополнительные исследования в области ядерных убежищ. Так что делать, если перед вами грибовидное облако?

Больше по теме: Что такое кинетическое оружие звездные войны и другие печальные перспективы

Первые действия при ядерном взрыве

Итак, когда взрывается ядерное устройство, создается большой огненный шар. Все, что находится внутри этого огненного шара, испаряется, включая почву и воду, и уносится вверх. Это создает грибовидное облако, которое мы ассоциируем с ядерным взрывом. Радиоактивный материал из ядерного устройства смешивается с испаренным материалом в грибовидном облаке.

Когда этот испаренный радиоактивный материал охлаждается, он конденсируется и образует частицы, например пыль. Конденсированный радиоактивный материал затем падает обратно на Землю, создавая радиоактивные осадки. Поскольку осадки выпадают в виде частиц, они могут переноситься ветровыми потоками на большие расстояния и в конечном итоге оказаться в километрах от места взрыва. Радиоактивные осадки могут привести к загрязнению всего, на что попадают, включая запасы продовольствия и воды.

Ядерная война худшее что может случиться с нашей планетой

Правило номер один: чем дольше вы остаетесь на улице, тем большую дозу радиации получите. Если ваше убежище плохое, а хорошее находится менее чем в 5 минутах езды, вам следует бежать туда как можно скорее не позднее, чем через 30 минут после взрыва.

В зависимости от размера города, если все последуют этому совету, будут спасены от 10 000 до 100 000 жизней, пишет Дилан в статье, опубликованной в журнале Proceedings of the Royal Society A.

Перед тем, как отправиться в ближайшее укрытие, возьмите с собой предметы первой необходимости: фонарик и дополнительные батарейки, радио (на батарейках), аптечку и необходимые лекарства, продукты питания и воду. На случай чрезвычайной ситуации неплохо иметь под рукой консервный нож, наличные и кредитные карты, а также прочную обувь.

Чтобы всегда быть в курсе последних новостей из мира науки и технологий, подписывайтесь на наш новостной канал в Telegram так вы не пропустите ничего интересного!

Как спастись от ядерного взрыва на улице?

Согласно рекомендации Всемирной организацией здравоохранения (ВОЗ), если вы находитесь рядом со взрывом, то первым делом необходимо закрыть глаза, чтобы не повредить зрение. Затем необходимо лечь на землю, положив руки под туловище. В таком положении необходимо оставаться неподвижным до тех пор, пока не пройдут две ударные волны.

Если взрыв застанет вас на улице, найдите что-то, чем можно прикрыть нос и рот, например шарф или носовой платок. Чтобы удалить радиоактивные осадки с одежды, всегда прикрывайте лицо.

Ядерная война приведет к выбросу 150 миллионов метрических тонн сажи в верхние слои атмосферы

Выбирать укрытие, которым может быть подвал или любое подземное помещение, следует из следующих соображений: убежище расположено подальше от направления, в котором дует ветер. После того, как доберетесь до укрытия, снимите одежду она может быть загрязнена. Если ситуация позволит принять душ и переодеться сделайте это перед тем, как войти в убежище.

Как пережить ядерный взрыв в убежище?

Итак, если вам удалось пережить ядерный взрыв и добраться до безопасного места, ваши действия должны быть следующими:

  • Прикрывайте рот и нос маской для лица или другим материалом до тех пор, пока облако радиоактивных осадков не пройдет. Необходимо также отключить вентиляционные системы и закрыть двери.
  • После того, как облако радиоактивных осадков рассеется, двери и окна можно открывать это обеспечит некоторую циркуляцию воздуха. Оставайтесь внутри до тех пор, пока власти не сообщат, что выходить безопасно.
  • Слушайте местное радио или телевидение для получения информации и советов. Власти могут предписать вам оставаться в убежище или эвакуироваться в более безопасное место подальше от эпицентра взрыва.
  • Если вам по какой-то причине нужно покинуть убежище, прикрывайте рот и нос влажным полотенцем.
  • Используйте запасенные продукты питания и питьевую воду. Не ешьте местные свежие продукты и не пейте воду из открытых источников водоснабжения. Пейте бутилированную воду и принимайте пищу из герметично закрывающейся тары.
  • Если вы получили травму, очистите и обработайте открытые раны на теле.

Как спастись от радиации?

Так как самыми тяжелыми последствиями взрыва являются радиоактивные осадки, власти могут рекомендовать к применению йодид калия (KI), который блокирует поглощение радиоактивного излучения щитовидной железой. Важно: KI (йодид калия) защищает только щитовидную железу, но не другие части тела.

Ядерная волна может погубить все живое на земле

Таблетка йодида калия в домашней аптечке спасет от рака щитовидной железы в случае аварии или взрыва. Поваренная соль и продукты, богатые йодом, не содержат достаточного количества йода, необходимого для предотвращения попадания радиации в щитовидную железу. Не используйте поваренную соль или продукты питания в качестве замены KI!

Йодная профилактика направлена на защиту щитовидной железы от негативного воздействия радиоактивных изотопов йода. Самостоятельное потребление йодида калия возможно после того, когда станут известны радиоактивные вещества, высвобожденные ядерным взрывом.

Разовая доза KI защищает щитовидную железу в течение 24 часов. Для ее защиты, как правило, вполне достаточно одноразовой дозы в установленных размерах .Берегите себя и близких. И помните лучше быть готовыми к катастрофе но надеяться нужно на лучшее.

Подробнее..

Первая плавучая атомная станция в мире введена в строй. В России

27.05.2020 20:06:46 | Автор: admin

Слышали про атомные электростанции? Звучит круто и они дают нам очень многое, но теперь появился новый тип этих источников энергии. Только представьте себе: безумное количество энергии, которое можно доставить куда угодно и при этом с минимальными затратами. Не надо тянуть провода или готовить инфраструктуру и специальные подстанции. Просто энергия придет сама. Еще Тесла хотел передавать энергию без проводов на огромные расстояния, но тогда до этого так и не дошло. Теперь пришло время чего-то нового — того, чего нет в мире. О чем это я? Ах да, плавучие атомные станции.

Первая в мире плавучая атомная станция

Признаюсь честно, когда я столкнулся с этой новостью, мне показалось, что кто-то просто оправдывается за то, что он потратил миллиарды рублей и сделал просто баржу с атомным реактором. Немного разобравшись в теме, я понял, что эта идея действительно очень перспективна. К этому мы еще вернемся чуть ниже, а пока напомню, что вообще произошло.

22 мая 2020 года в России была сдана в промышленную эксплуатацию первая в мире плавающая атомная станция. Она не является самоходной и для транспортировки ей нужен буксир. В этом нет ничего страшного, так как такой объект все равно вряд ли будет перемещаться без сопровождения.

Полное название нового типа станций звучит, как плавучая атомная теплоэлектростанция — сокращенно ПАТЭС. Объект, о котором мы сейчас говорим, называется Академик Ломоносов и на данный момент находится на Чукотке.

Пока станция работает не на полную мощность, но постепенно на нее выводится, и станет не просто батарейкой на воде, а основным источником энергетической сети Чукотки. Всего же станция стала одиннадцатой атомной электростанцией в России и первой плавучей.

Важность события признали даже иностранные специалисты. Так международный журнал Power включил строительство станции в список шести ключевых событий, связанных с атомной энергетикой в мире.

Так Академик Ломоносов выглядит на воде.

А теперь можно поговорить о том, что из себя представляет этот объект, как планируется его эксплуатировать и будут ли построены другие станции подобного типа.

Что такое ПАТЭС

Если не усложнять, то плавучая атомная электростанция мало, чем отличается от той, что расположена на суше за исключением опоры, на которой она построена.

ПАТЭС состоит из плавучего энергоблока, береговой инфраструктуры для выдачи электрической и тепловой энергии потребителям, а так же гидротехнических сооружений, которые отвечают за безопасную стоянку в акватории.

Сам энергоблок имеет не меньше, а даже больше степеней защиты, так как потенциально на него может быть больше воздействий и инженеры постарались все предусмотреть. В первую очередь, это касается очень мощной плавучей основы. Все ее части двуслойные, то есть даже столкновение с чем-либо не должно сильно навредить ПАТЭС.

Давайте разберемся, Как работает АЭС и опасны ли они.

На Академике Ломонсове установлено два атомных реактора типа КЛТ-40С. Электрическая мощность каждого составляет 35 МВт. В сумме получается максимальная электрическая мощность всей станции на уровне 70 МВт. Этого достаточно для перекрытия потребностей в энергии населенного пункта, в котором проживает до 100 000 человек.

Кроме выработки электроэнергии, станция может вырабатывать и тепло. Максимальная тепловая мощность составляет 50 Гкал/ч. Но и этим не ограничивается применение ПАТЭС Академик Ломоносов.

Чтобы станция была еще больше похожа на швейцарский нож, ее оснастили системой опреснения воды, которая должна опреснять до 240 тысяч кубометров морской воды в сутки.

Академика Ломоносова начали строить еще в 2007 году и только сейчас он был введен в промышленную эксплуатацию. Хотя, первую энергию в сеть он начал передавать еще в декабре 2019 года.

Так объект выглядел на этапе строительства

Для чего нужны плавучие атомные электростанции

На самом деле, если как следует разобраться, именно плавучая атомная электростанция является очень удобным средством производства энергии. Сейчас она стоит на месте и можно спросить, почему бы не построить там обычную станцию. Доля логики в таком вопросе есть, но ведь если где-то понадобится энергия, станцию можно транспортировать туда.

Даже не обязательно, чтобы потребитель находился на берегу. Можно просто протянуть высоковольтную линию и запитать даже удаленные объекты. Это все равно будет удобно. Особенно в условиях временного использования. Например, когда есть проблемы с электричеством после стихийного бедствия или просто ремонтных работ на местных электростанциях.

Как Земля может служить источником неисчерпаемой энергии

Так же такая станция очень пригодится для военных целей. Например, для обеспечения работы автономных противоракетных комплексов, до которых протянуть линию электропередач просто не получится. Когда объект будет передислоцирован, станция может отправиться за ним или переместиться для обеспечения энергией других мест.

Проще говоря, вариантов масса. Можно привести немного абсурдный пример с внешним аккумулятором для смартфона. Можно зарядиться от розетки, но что делать, если ее нет?

Примерная схема устройства ПАТЭС.

Перспективы ПАТЭС

Я не говорю, что такая станция решит все проблемы с энергетикой, но научиться делать их раньше остальных может быть очень хорошей идеей. Если станция будет работать исправно, то она может оказаться очень перспективной и на ее продаже можно очень неплохо заработать.

Уже есть проект второго поколения ПАТЭС. Они будут иметь более компактный энергоблок, который будет выдавать уже не 75, а 100 МВт. Также Росатом утверждает, что ведет переговоры с потенциальными покупателями в Латинской Америке, Африке и Азии.

Критика ПАТЭС


Ну, а в конце добавлю немного негатива. Нельзя не отметить, что стоимость получения энергии с такой станции существенно выше, чем у стационарных аналогов. С критикой стоимости киловатта в 2007 году выступал даже министр экономического развития и торговли Герман Греф.

Эту установку много критиковали, но ее все равно построили. Строительство не заморозилось.

Кроме этого, есть норматив обслуживания, который не позволяет станции быть единственным источником энергии в регионе. Согласно нормам, она должна раз в 12 лет на год уходить в ремонтный порт, где будут проведены необходимые регламентные работы и перезагружено топливо. Срок проведения таких работ составляет один год. Оставлять 100 000 человек без света на год нельзя. Возможно, эту проблему решит строительство новых станций, которые будут ратироваться и подменять друг друга, но пока говорить об этом рано. Хотя, обсудить это в нашем Telegram-чате можно.

Если для решения этой проблемы строить местную электростанцию, то тогда зачем нужна плавучая?

Выходит, ПАТЭС не так и хороши? Сложно сказать. Сначала надо решить некоторые вопросы, связанные с новой технологией. После этого все должно наладиться. Было бы неплохо получить новый источник энергии, пока мы не дошли до термоядерного синтеза в токамаках. Главное, чтобы это было безопасно.

Выглядит эпично.

Подробнее..

Как работают атомные ледоколы и почему Россия лидирует в этом направлении

30.05.2020 20:03:54 | Автор: admin

Так уж устроена земная твердь, что существует такое понятие, как Северный морской путь. Это транспортная артерия, проходящая далеко на севере. Там просто невозможно проходить обычным судам. Для этого они сопровождаются огромными атомными монстрами, которые называют ледоколами. Одна такая машина может ломать лед толщиной до нескольких метров и создавать свободный ото льда проход шириной в десятки метров. Это позволяет судам в несколько раз быстрее проходить путь из Азии в Европу и экономить такие объемы топлива, что вся эта затея действительно имеет смысл. Скоро в России построят новый, самый большой в мире ледокол. А вообще, вы знали, что все атомные ледоколы мира построены в СССР или России?

Самый большой ледокол в мире

На данный момент самыми большими ледоколами в мире являются те, что имеют класс ЛК-60Я. Правда, ни один их них не введен в строй, но их строительство постепенно близится к завершению и в течение пары лет три таких ледокола спустят на воду.

Если говорить только о тех ледоколах, что сейчас находятся в промышленной эксплуатации, то это суда класса Арктика. На данный момент в строю только два из них — это Ямал (введен в строй в 1993 году) и 50 лет победы (введен в строй в 2007 году).

Ледоколы этого класса имеют следующие характеристики:

  • Длина — 148 метров
  • Ширина — 30 метров
  • Высота борта — 17,2 метра
  • Мощность турбин — 2 по 27 580 КВт
  • Число гребных винтов — 3
  • Толщина проходимого льда — 2,25 метра
  • Экипаж — 130 человек

Для сравнения, атомные ледоколы класса ЛК-60Я примерно на четверть мощнее, ломают лед до трех метров и имеют экипаж всего 70 человек.

Сколько в мире ледоколов

В мире на данный момент насчитывается 10 атомных ледоколов. Если говорить более точно, то можно даже сказать, что 9,5. Нельзя считать полноценным ледоколом атомный лихтеровоз (единственный в мире) с ледокольным носом. Из этих кораблей сейчас только пять в строю, но, что интересно, все 10 были спроектированы в СССР или России.

Так ледоколы прокладывают себе путь.

Шесть из них были построены на Адмиралтейских верфях и Балтийском заводе в Ленинграде. Еще три были построены в Финляндии, но ядерные энергоблоки на них поставили в Ленинграде. Только тот самый лихтеровоз был построен на керченском заводе Залив.

Лихтеровоз (иногда называется баржевоз) специализированное судно для перевозки груза в лихтерах или баржах, контейнерах. Имеет в конструкции козловой кран для более удобной погрузки. Часто используется для перевозки больших объемов рыбы в контейнерах.

Весь атомный ледокольный флот сейчас принадлежит России и базируется он в порту города Мурманск.

Как работает ледокол

Суть работы ледокола заключается в том, что он с ходу наваливается своей массой на лед и ломает его. Это самый простой способ, так как снизу всегда есть куда проломить лед, да и сила тяжести помогает. Поэтому они такие тяжелые.

Немного информации о ледоколах

Несмотря на кажущуюся простоту процесса, обычный корабль просто не сможет выполнить эту роль. Для того, чтобы ломать лед толщиной до трех метров, нужна очень мощная энергетическая установка и прочнейший корпус с защитой от истирания, чтобы корабли служили как можно дольше. Они стоят слишком дорого, чтобы быть одноразовыми.

Корабль викингов пролежал под землей 1 000 лет. Теперь его хотят достать.

Чтобы лучше наваливаться на толщу льда, днище носовой части ледокола сделано бочкообразным. Это помогает в борьбе со льдом, но сильно мешает в обычном плавании. Из-за такой формы днища ледоколы очень сильно раскачиваются даже от небольших волн. При этом, качнуть его может очень резко.

Суда следуют за ледоколом, как утята за уткой.

В задней части ледоколов есть м-образное углубление. Оно нужно для того, чтобы буксировать другое судно на усах. Так называют способ, когда нос корабля как бы входит в корму ледокола. В этот момент тот корабль, который находится сзади, может не только буксироваться, но и подталкивать ледокол за счет своих винтов, помогая ему проходить препятствия.

Мало кто задумывался об этом, но винты ледоколов приводятся в движение электродвигателями, которые получают энергию от атомного реактора на бору. Такая компоновка очень удобна, а главное, позволяет надолго уходить в автономное плавание, так как электродвигатели не требуют частого обслуживания, а запас ядерного топлива позволяет долгое время обходиться без дозаправки.

Дизельный ледокол больше похож на обычный корабль. На фото российский ледокол «TOR»

Когда построят новые атомные ледоколы

В ближайшие 7 лет планируется сдать в эксплуатация не только три атомных ледокола класса ЛК-60Я, но и один класса ЛК-100Я. Правда, его только начинают строить и должны ввести эксплуатацию к 2027 году. Зато это будет настоящий царь-ледокол.

Американский корабль уничтожил летательный аппарат при помощи мощного лазера

Согласно проекту, его мощность будет составлять 120 000 КВт (в два раза больше нынешнего максимума). В движение великан будет приводиться четырьмя винтами, его длина составит больше двухсот метров, а лед он будет ломать толщиной до 4 метров.

Таким может быть новый ледокол «Лидер».

Рассматривается вариант строительства четырех таких ледоколов, но пока строится только один. Остальные должны появиться к 2033 году. Когда они появятся, мы расскажем об этом в нашем новостном Telegram-канале.

Зачем нужны ледоколы

В первую очередь, ледоколы освобождают путь для торговых судов, в том числе и нефтяных танкеров. Кроме этого, ледоколы используются для самостоятельной доставки грузов в труднодоступные районы Арктики (и Антарктики), а так же спасательных и поисковых операций.

Атомный ледокол «Ямал».

Самый большой флот ледоколов сейчас у России — 40 судов (включая дизельные). Это не удивительно, учитывая огромную береговую линию Северного ледовитого океана. Действующих атомных ледоколов в России 4 — это Ямал, 50 лет Победы, Таймыр и Вайгач. В том числе и эти ледоколы внесли очень большой вклад в развитие Северного морского пути, как одной из крупнейших транспортных артерий мира.

Ледоколы вызывают большое уважение.

Подробнее..

Почему белорусская АЭС прекратила работу и опасно ли это?

11.11.2020 00:05:47 | Автор: admin

Заметили, что атомные станции всегда фотографируют в ясную погоду. Наверное, чтобы она не выглядела такой устрашающей.

Несколько дней назад президент Белоруссии Александр Лукашенко поучаствовал в церемонии торжественного ввода в эксплуатацию новой атомной электростанции, которая должна очень сильно помочь в обеспечении республики электроэнергией. Как говорится, не прошло и , как работу станции пришлось экстренно останавливать. Виной тому оказался взрыв оборудования, которое в том числе отвечает за безопасность работы объекта. Проблема не могла остаться без внимания, ведь у нас еще свежи в памяти Чернобыль и Фукусима, оставившие свой мрачный след не только в прошлом, но и в будущем. Одно то, что станция находится в самом центре Европы, откуда рукой подать до многих крупных столиц, включая Москву, уже заставляет насторожиться и мысленно попросить руководство БелАЭС не запускать ее заново. Давайте разберемся, что там произошло и настолько это опасно для окружающих.

Что случилось на белорусской атомной станции

Согласно информации, которая появилась в Сети, проблемы на атомной станции начались еще в воскресенье — на следующий день после запуска оборудования. Широкой огласки эта информация не получила, но станция перестала вырабатывать мощность.

Как работает АЭС? Опасны ли атомные станции?

В момент аварии система находилась в рабочем состоянии, но не использовалась на полную мощность. На первых этапах проводятся различные проверки в некоторых режимах работы, часто близких к критическим. В этот момент и произошло то, что наделало так много шума, что даже правительство Литвы обратилось к руководству страны, выразив свои опасения по поводу происходящего. Заявление опубликовано на сайте правительства прибалтийской страны.

Строительство атомной станции было долгим. Теперь придется ее долго ремонтировать.

Взрыв на АЭС в Белоруссии

Как бы страшно это не прозвучало, но на атомной станции произошел взрыв. Взорвались несколько трансформаторов напряжения. Это оборудование предназначено для измерения напряжения в силовых электрических цепях. Трансформаторы были установлены на одном из агрегатов, связанных c генератором первого энергоблока.

Специалисты, в том числе независимые, утверждают, что формально ничего страшного не произошло и ситуацию, хоть и нельзя считать штатной, но и к критическим она не относится. Правда, все в один голос отмечают, что проверка остального оборудования, выяснение причин поломки и устранение неисправности займет много времени.

Как захоранивают ядерное топливо, и как долго оно опасно

Успокоить нас должны слова экспертов, которые говорят о том, что такая нештатная ситуация не способна привести к утечке радиации. Если они лукавят, ошибаются или проблема сложнее, чем нам сказали, совсем скоро должна появиться информация об изменении радиационного фона в некоторых регионах. Мы будем пристально следить за этим и в случае выявления повышения фона, обязательно расскажем об этом в нашем Telegram-канале.

Кто виноват в аварии на атомной станции в Белоруссии

На данный момент основным виновником происшедшего считается производитель вышедшего из строя оборудования, хотя по результатам расследования могут быть выявлены и другие причастные к инциденту.

Атомная станция — масштабное сооружение.

По словам источников, знакомых с ситуацией, производителю взорвавшихся трансформаторов уже направлена претензия. Он должен будет принят участие в расследовании происшествия и компенсировать расходы, связанные с устранением его последствий.

Больше информации появится, когда будут опубликованы первые результаты этого расследования. Пока же, по некоторой информации, работа станции в некоторых тестовых режимах продолжается.

Насколько авария в Чернобыле была страшнее других аварий на АЭС?

Кто построил БелАЭС

Строительство атомной электростанции в Белоруссии является по-настоящему международным проектом. В ее создании принимала участие команда специалистов из России, Белоруссии и Украины. Основной рабочей силой на станции являются также представители этих стран, число которых достигает 2500 человек.

Строительство станции выглядело очень эпично. Хотя, ранее была информация, что оборудование реактора во время установки уронили, но это не привело к его повреждению.

Генеральным подрядчиком строительства станции выступает госкорпорация Росатом. Всего в составе БелАЭС планируется работа двух реакторов ВВЭР-1200 суммарной мощностью 2400 МВт. Они должны обеспечить энергией значительную часть энергосистемы Белоруссии.

По расчетам годовая выработка энергии БелАЭС будет составлять 18 миллиардов кВт.ч. Для выработки такого же количества энергии станции, работающей на природном газе, потребовалось бы 4,5 миллиарда кубометров топлива в год. Такой переход позволит республике сэкономить до 500 миллионов долларов

Ранее по этому проекту госкорпорацией Росатом уже были построены три энергоблока такого же типа. Они уже несколько лет успешно работают в составе Нововоронежской АЭС и Ленинградской АЭС. Правда, стоит отметить, что ранее сообщалось об аналогичном происшествии на последней. К серьезным последствиям это не привело.

Где в Белорусии атомная станция

БелАЭС была построена около города Островец Гродненской области. Изначально планировалось ввести ее в эксплуатацию 7 ноября 2020 года. На этот день и была намечена торжественная церемония запуска. При этом в энергетическую систему Белоруссии станцию включили еще 3 ноября.

Лукашенко

Естественно, в открытии станции принимал участие президент республики.

По расчетам станция должны проработать 60 лет, после чего регламентные работы смогут увеличить срок ее службы до 100 лет. Это делает проект рентабельным, хоть и не самым безопасным источником энергии.

Подробнее..

Что будет если на атомной электростанции отключат электричество?

11.03.2022 02:05:22 | Автор: admin

Атомные электростанции очень сложные сооружения, в которых все взаимосвязано

Чтобы обеспечить людей необходимым для комфортной жизни электричеством, во всем мире работают тысячи электростанций. Они бывают разные: одни вырабатывают энергию за счет воды, другие преобразовывают в электрический ток энергию солнца, ветра и так далее. Но самыми эффективными считаются атомные электростанции, которые не вредят природе выбросами парниковых газов. Но есть один минус в каждой атомной электростанции хранится огромное количество отработавшего ядерного топлива, которое должно быть максимально изолировано от окружающей среды. Чтобы радиоактивные вещества не навредили природе, людям и животным, используются охладители, вентиляция и другая сложная техника, которая тоже нуждается в некотором количестве энергии. В случае обесточивания атомной электростанции может возникнуть множество проблем. Так, по крайней мере, говорят некоторые эксперты.

Как работают атомные электростанции?

Многие люди считают, что работа атомной электростанции это сложный процесс, который трудно описать в нескольких словах. Но, если постараться, описать принцип работы атомной электростанции очень просто. Главная задача таких сооружений заключается в преобразовании тепловой энергии в электрическую. По сути, атомные станции для обеспечения людей светом работают так же, как и тепловые аналоги. Отличие заключается только в том, что для нагрева воды используется энергия, получаемая при распаде ядер урана.

Если хотите узнать, как работает атомная электростанция, вы обратились по адресу

Если хотите узнать о работе атомных электростанций больше подробностей, вы находитесь в нужном месте. У нас есть отличный текст на эту тему в ней описаны все мельчайшие детали. Если лень читать, обратите внимание на это видео.

Что такое отработавшее ядерное топливо?

Время от времени из активных зон атомных электростанций извлекается топливо, которое больше не способно поддерживать цепную реакцию. В отличие от свежего топлива, отработавшее топливо обладает значительной радиоактивностью, потому что имеет большое количество продуктов деления. В открытом воздухе оно само собой разогревается до больших температур, в чем и заключается его главная опасность. После извлечения из активной зоны, неспособное на поддержание цепной реакции топливо отправляется в бассейны выдержки там оно находится от 2 до 5 лет. Все зависит от того, какое время оно будет избавляться от остаточного энерговыделения. Как только этот процесс закончится, работники электростанций отправляют топливо на хранение, переработку или утилизацию.

Бассейн выдержки ядерного топлива

Последствия обесточивания атомной электростанции

Чтобы предотвратить нагревание отработавшего ядерного топлива, используются системы охлаждения. Они нуждаются в электропитании, поэтому при обесточивании топливо начинает перегреваться. Это чревато испарением, в результате чего радиоактивные вещества могут попасть в окружающую среду. А об опасности облучения радиацией постоянные читатели нашего сайта наверняка хорошо знают. При облучении радиоактивными веществами в организме людей нарушается обмен веществ, повышается риск инфекционных осложнений и развития онкологических заболеваний.

О том, что радиация делает с организмом человека, можете почитать тут

Но нагревание ядерного топлива и его испарение это только полбеды. При отсутствии электричества, на атомной электростанции перестает работать система вентиляции. Из-за этого весь персонал, который находится внутри, может получить наиболее опасную дозу облучения. Также в электричестве нуждается система тушения пожаров. Если в сооружении возникнет пожар, люди узнают о нем не сразу же, из-за чего вероятность быстрого тушения заметно снижается. Совокупность всех этих факторов может стать причиной серьезных проблем. Эксперты не исключают и вероятность того, что радиоактивные вещества будут разнесены по близлежащим территориям под воздействием ветра.

Система вентиляции атомной электростанции

Если вам интересны новости науки и технологий, подпишитесь на наш Telegram-канал. Там вы найдете анонсы свежих новостей нашего сайта!

Если верить открытым источникам, на сегодняшний день тридцать одна страна мира получает энергию с помощью 192-х атомных электростанций. На всех них в общем числе эксплуатируется 438 энергоблоков, которые включают в себя паровой котел или ядерный реактор, турбину, турбогенератор и другое оборудование для преобразования тепловой энергии в электричество. Как я уже говорил, для выработки электричества существуют и другие виды электростанций. Многие страны серьезно рассматривают замену атомной энергетики на возобновляемую (солнечные, ветровые и другие зеленые виды электростанций). Ученые спорят, какой вид энергетики лучше подробнее об этих спорах можете почитать в этом материале.

Подробнее..

Ядерная энергетика как утилизировать уран?

24.03.2022 18:09:58 | Автор: admin

Добыча урана опасна, а радиация вредит здоровью

Разновидность энергии, которая высвобождается из центральной части атомов ядер, состоящих из нейтронов и протонов, называется ядерной. Ее источником являются два физических процесса: деление то есть распад атома на несколько частей и синтез слияние атомов. Эти процессы используются для производства электроэнергии, без которой представить современную цивилизацию невозможно, ведь она необходима для создания электричества. Примечательно, что современные атомные электростанции производят возобновляемую, чистую энергию, которая не загрязняет воздух и не выделяет парниковых газов. Но как и во всех отраслях промышленности и производства, использование ядерной энергии приводит к образованию чрезвычайно токсичных материалов, контакт с которыми может привести к ожогам, повышенному риску развития рака, заболеваниям крови и разрушению костей.

Радиоактивный материал совокупность нестабильных атомных ядер, которые теряют энергию и могут воздействовать на многие окружающие их материалы, включая живые организмы и окружающую среду.

Деление атомов как источник энергии

Идея ядерной энергетики зародилась в 1930-х годах, когда итальянский физик Энрико Ферми впервые показал, что нейтроны могут расщеплять атомы. Ферми был создателем первого в мире ядерного реактора Чикагская поленница-1, созданного для проверки возможности осуществления управляемой цепной ядерной реакции.

Будучи одним из «отцов-основателей ядерной бомбы», Ферми внес большой вклад в развитие ядерной физики, физики элементарных частиц, а также квантовой и статистической механики.

Ядерный реактор или электростанция это машина, управляет ядерным делением для производства электроэнергии. Наиболее распространенным топливом является уран металл, встречающийся во всем мире. После добычи уран перерабатывают а затем используют в качестве топлива. Причина такого выбора ясна атомы урана легко расщепляются.

Уран также встречается в горных породах. Но конкретный тип урана, используемый для производства ядерной энергии называется U-235 и встречается редко.

Распадаясь внутри ядерного реактора атомы урана выделяют крошечные частицы так называемые продукты деления. Именно они запускают цепную ядерную реакцию, в конечном итоге создавая тепло. Однако добыча и последующая переработка урана приводят к образованию радиоактивных отходов.

Больше по теме: Как добывается радиоактивный уран и для чего он используется?

Ядерные отходы

С момента зарождения атомной энергетики ядерные отходы не причиняли вреда людям. Распространенное заблуждение заключается в том, что, поскольку определенные части ядерных отходов остаются радиоактивными в течение миллиардов лет, угроза должна сохраняться на протяжении всего периода. Но это не так.

Радиация является неизбежной частью жизни на нашей планете.

Ключевой фактор в понимании того, почему хранилища ядерных отходов не представляют угрозы для здоровья, связан с количеством материалов, которые были бы обнаружены в окружающей среде в случае утечки.

Читайте также: Эффект Вавилова-Черенкова: что нужно знать?

Радиоактивные отходы в основном представляют собой защитную одежду, инструменты и любые другие материалы, которые контактировали с радиоактивной пылью (90% от общего объема). Учитывая, что радиоактивные отходы долговечны, зараженная одежда и инструменты могут оставаться радиоактивными на протяжении тысяч лет. К счастью, эти отходы содержат всего 1% от общей радиоактивности.

Первая атомная электростанция была запущена в 1954 году в районе города Обнинск Московской области.

Всего исследователи выделяют три типа ядерных отходов, классифицируемых в соответствии с их радиоактивностью: низкий, средний и высокий уровни. Так, высокоактивные отходы в основном состоят из отработанного ядерного топлива и составляют всего 3% от общего объема отходов.

Не пропустите: Как работает АЭС? Опасны ли атомные станции?

Утилизация ядерных отходов

В мире существуют две основные стратегии обращения с отходами: некоторые страны десятилетиями перерабатывают отработанное ядерное топливо; другие выбирают прямую утилизацию (об этом ниже). По сути, это стратегическое решение, принятое на национальном уровне и в основном обусловленное политическими и экономическими, а также технологическими соображениями.

В отличие от любой другой отрасли, производящей энергию, ядерный сектор берет на себя полную ответственность за утилизацию отходов. Так как ядерное топливо энергоемко, для производства огромного количества электроэнергии требуется его небольшой расход.

Ядерный реактор установка, в которой осуществляется самоподдерживающаяся управляемая цепная ядерная реакция деления.

Интересный факт
Типичный ядерный реактор использует около 200 тонн урана каждый год. Сложные процессы позволяют повторно обогащать или перерабатывать некоторое количество урана и плутония, что значительно сокращает объем добычи, извлечения и обработки.

В среднем отходы от реактора, обеспечивающего потребности человека в электроэнергии в течение года, размером примерно с кирпич. Для сравнения: угольная электростанция мощностью 1000 мегаватт ежегодно производит около 300 000 тонн золы и более 6 миллионов тонн углекислого газа.

Прямая утилизация и хранение

Прямая утилизация это стратегия, при которой отработанное ядерное топливо классифицируется как отходы и утилизируется в подземных хранилищах без какой-либо переработки.

Отработанное топливо помещают в канистры, которые, в свою очередь, помещают в туннели и впоследствии запечатывают камнями и глиной. Отходы от переработки так называемые продукты деления также остаются в хранилище. Но свободных мест хранения остается все меньше (например, в Финляндии).

Что же до использованного урана, то его необходимо хранить в специальных контейнерах, похожих на большие плавательные бассейны. Вода охлаждает топливо и изолирует внешнюю поверхность от контакта с радиоактивностью, уточняют специалисты.

Хранение и переработка ядерных отходов строго регулируется правительствами

На сегодняшний день переработка отходов в основном сосредоточена на извлечении плутония и урана, поскольку эти элементы можно использовать повторно в обычных реакторах. Отделенные плутоний и уран впоследствии можно смешивать со свежим ураном и превратить в новые топливные стержни.

Вам будет интересно: Атомная энергетика или возобновляемая какая лучше?

Переход к ядерной энергетике

Так как атомные электростанции производят возобновляемую, чистую энергию, не загрязняют воздух и не выделяют парниковых газов, их можно строить в городских или сельских районах и не переживать за окружающую среду вокруг. И все же, споры на счет утилизации и хранения ядерных отходов продолжаются в виду проблем с изменением климата, предложения о переходе к ядерной энергетике звучат все чаще.

Так как ядерная энергетика зависит от добываемых ограниченных ресурсах, действующие реакторы не способствуют глобальному потеплению. Сторонники ядерной энергетики также утверждают, что ее следует рассматривать как одно из решений проблемы изменения климата.

Хотите всегда быть в курсе последних новостей из мира науки и технологий? Подписывайтесь на наш канал в Telegram так вы точно не пропустите ничего интересного!

Чтобы обеспечить людей необходимым для комфортной жизни электричеством, во всем мире работают тысячи электростанций.

Их оппоненты не столь оптимистичны, отмечая, что атомная энергетика не может рассматриваться в качестве «зеленого» источника энергии, поскольку ее использование сопряжено с рисками аварий, радиоактивным загрязнением и уязвимости в связи со стремительным изменением климата.

Кстати, вы знаете какое место на Земле самое радиоактивное? Подробнее о том, почему это звание не принадлежит Чернобылю, рассказывал мой коллега Рамис Ганиев, рекомендую к прочтению.

Подробнее..

Малый модульный ядерный реактор революция в ядерной энергетике?

29.11.2022 16:12:25 | Автор: admin
Малый модульный ядерный реактор революция в ядерной энергетике? За малыми модульными реакторами, возможно, будущее ядерной энергетики. Фото.

За малыми модульными реакторами, возможно, будущее ядерной энергетики

Несмотря на всю эффективность ядерной энергетики, в какой-то момент западные страны начали от нее отказываться из экологических соображений. В качестве альтернативы ей рассматривалась зеленая энергетика. Однако с наступлением энергетического кризиса мирный атом вновь стал актуальным. Но классические атомные станции имеют ряд недостатков. Прежде всего, они очень дорогие, а их строительство это очень сложный и длительный процесс. Кроме того, не стоит забывать о других недостатках, из-за которых в мире стали от них отказываться это опасность техногенной катастрофы, наличие ядерных отходов, выбросы тепловой энергии в водоемы и т.д. Очевидно, ядерная энергетика нуждается в новых технологиях, которые лишены этих недостатков. И такие технологии уже существуют это малые модульные ядерные реакторы. Далее подробно рассмотрим что это такое и в чем заключаются их преимущества.

Малый модульный ядерный реактор в чем его особенности

Малый модульный ядерный реактор (ММР) отличается от больших реакторов АЭС прежде всего размерами. Он в несколько раз меньше. Например, американский ММР NuScale Power представляет собой стальной цилиндр высотой 23 метра и диаметром 5 метров. Как не сложно догадаться, такие реакторы производят меньше энергии до 300 МВт, но, как правило, еще меньше. Большие традиционные реакторы производят более 700 МВт электроэнергии. Казалось бы, это серьезный недостаток, но не спешите с выводами.

ММР имеют модульную конструкцию. То есть отдельные элементы реактора создаются на заводе, а затем он быстро собирается на объекте. Благодаря этому строительство ММР обходится значительно дешевле, чем строительство большого реактора. Сам процесс занимает несоизмеримо меньше времени.

Малый модульный ядерный реактор в чем его особенности. Малый модульный реактор в несколько раз меньше обычного большого реактора. Фото.

Малый модульный реактор в несколько раз меньше обычного большого реактора

Кроме того, мини-АЭС с ММР занимает гораздо меньшую площадь, чем классические АЭС. Причем строить их можно на участках, которые не подходят для строительства больших энергоблоков. Кроме того, они менее требовательны к инфраструктуре и могут даже работать автономно.

Также следует отметить, что для ввода обычного реактора в эксплуатацию требуется много лет. Малые же реакторы этого недостатка тоже лишены.

Принцип работы и безопасность малых модульных реакторов

Само слово реактор подразумевает, что в ММР происходит ядерная реакция, то есть энергия возникает в результате ядерного деления. Однако получаемая таким способом энергия может преобразовываться в электричество разными способами, в зависимости от модификации реактора. Существуют ММР которые представляют собой уменьшенные копии обычных реакторов АЭС. В других же модификациях могут быть использованы иные технологии.

Принцип работы и безопасность малых модульных реакторов. ММР NuScale Power вырабатывает электричество при помощи паровой турбины. Фото.

ММР NuScale Power вырабатывает электричество при помощи паровой турбины

К примеру, упомянутый выше реактор NuScale Power превращает энергию, выделяемую в результате ядерной реакции, в пар. Последний приводит в движение турбину, которая в свою очередь вырабатывает электричество. Принцип достаточно простой вода вначале нагревается во внутреннем контуре реактора, после чего тепловая энергия передается во внешний контур, где и возникает пар. При этом реактор автоматически прекращает ядерную реакцию при возникновении любой внештатной ситуации.

Благодаря маленьким размерам и современным технологиям строительства, эти реакторы отличаются несколькими важными преимуществами. Главное из них заключается в безопасности. То есть у них значительно ниже риск повреждения по причине природной катастрофы, к примеру, землетрясения. Кроме того, даже если аварийная ситуация возникнет, риск радиоактивных выбросов тоже минимальный. Это связано с малой мощностью реактора, низким внутренним давлением и другими особенностям конструкции. Таким образом ММР лишен главного недостатка классических АЭС, из-за которых их боятся.

Экономическая выгода от использования ММР

Итак, как мы выяснили, что ММР строятся быстро и сравнительно недорого, при этом они более безопасны, чем большие энергоблоки. Но этим преимущества малых реакторов не ограничиваются. Важным их плюсом, по словам специалистов, является дешевизна обслуживания благодаря тому, что они не требовательны к ядерному топливу.

Экономическая выгода от использования ММР. ММР менее требовательны к ядерному топливу, чем большие реакторы, поэтому реже нуждаются в его замене. Фото.

ММР менее требовательны к ядерному топливу, чем большие реакторы, поэтому реже нуждаются в его замене

На обычных реакторах замена топлива осуществляется каждые один-два года. Малые же реакторы требуют замены топлива раз в 3-7 лет. А некоторые их виды работают без перезагрузки вообще до 30 лет. При этом они почти не производят ядерных отходов, так как практически все топливо вырабатывается. Другим важным плюсом является тот факт, что ММРможно в любой момент безопасно останавливать и затем опять запускать. Обычные атомные станции, как мы рассказывали ранее, боятся обесточивания.

Перспективы малых модульных реакторов

В настоящее время малые модульные реакторы представляют собой только зарождающуюся отрасль в ядерной энергетике. Тем не менее действующие образцы уже позволяют говорить о ее перспективности. К таким образцам можно отнести российскую АЭС Академик Ломоносов. Она представляет собой первую в мире плавучую атомную станцию. На ней работают два ММР мощностью 35 МВт.

Обязательно подписывайтесь на ЯНДЕКС.ДЗЕН КАНАЛ, где вас ожидают поистине захватывающие и увлекательные материалы.

В настоящее время в мире разрабатываются 70 коммерческих ММР. Их строительством кроме России занимаются такие страны как США, Китай (разрабатывает самый маленький реактор в мире), Канада, Аргентина и Южная Корея. Очевидно, количество атомных станций с ММР будет быстро увеличиваться, ведь они являются эффективным способом добычи недорогой электроэнергии, при этом не загрязняют окружающую среду и лишены недостатков возобновляемых источников энергии, о которых мы рассказывали ранее.

Подробнее..

Категории

Последние комментарии

© 2006-2024, umnikizdes.ru