Русский
Русский
English
Статистика
Реклама

Гравитационные волны

Физики зафиксировали квантовый шум в лаборатории LIGO что нужно знать?

15.07.2020 14:09:23 | Автор: admin

Благодаря работе лабораторий LIGO VIRGO ученым удалось обнаружить гравитационные волны

Исследователи из проекта LIGO продемонстрировали, как сверхтонкая настройка приборов позволяет им раздвигать границы фундаментальных законов физики. Лазерно-интерферометрическая гравитационно-волновая обсерватория (LIGO) обнаруживает гравитационные волны, возникающие в результате катастрофических событий во Вселенной, таких как слияние нейтронных звезд и черных дыр. Эти пространственно-временные колебания позволяют ученым наблюдать гравитационные эффекты в экстремальных условиях и исследовать фундаментальные вопросы о Вселенной и ее истории. Недавно ученые зарегистрировали движение массивного объекта зеркала детектора под действием квантовых эффектов. Но что это означает?

Что такое квантовый шум?

Недавно физикам удалось измерить сдвиг огромного зеркала детектора LIGO, вес которого достигает сорока килограммов. Напомним, что в международную исследовательскую группу LIGO входит около 40 научно-исследовательских институтов, а над анализом данных, поступающих с детектора и других обсерваторий, трудятся более 600 ученых. Основной задачей LIGO является обнаружение и регистрация гравитационных волн космического происхождения, которые впервые были предсказаны Альбертом Эйнштейном в Общей теории относительности (ОТО) в 1916 году.

Как показали результаты исследования, опубликованного в журнале Nature, 40-килограммовые зеркала LIGO могут двигаться в ответ на крошечные квантовые эффекты, называемые квантовым шумом. В физике квантовый шум относится к неопределенности физической величины, что обусловлено его квантовым происхождением. В общем и целом квантовый шум является одним из фундаментальных квантовых законов: принципа неопределенности Гейзенберга, согласно которому некоторые физические величины не могут одновременно иметь абсолютно точные значения.

Улучшение инструментов и приборов LIGO в будущем откроет немало тайн Вселенной

Еще больше интересных статей о том, как устроена Вселенная вокруг нас, читайте на нашем канале в Яндекс.Дзен. Подписка позволяет читать статьи, которых нет на сайте.

Говоря простыми словами, некоторые величины измерить невозможно, так как физические законы этого не позволяют. На практике это означает, что в данных любого измерительного прибора присутствует квантовый шум, который настолько мал, что теряется в более мощных шумах, а еще его нельзя устранить. Однако физикам удалось измерить крошечный сдвиг сорокакилограммового зеркала детектора LIGO. Чтобы лучше понимать происходящее, представьте, что зафиксированный сдвиг в несколько раз меньше атома водорода. Но почему эта фиксированная «квантовая дрожь» важна для современной науки?

Как работает LIGO?

Так как принцип неопределенности Гейзенберга гласит, что с абсолютной точностью измерить пару физических величин нельзя, неопределенность, все же, можно уменьшить в одной из них, одновременно увеличив в другой. Именно так и поступили физики в ходе исследования они уменьшили квантовый шум и проверили, не изменился ли общий шум от всех источников и если да, то как. Для этого они использовали специальный прибор, с помощью которого удалось измерить вклад квантового шума в смещение зеркал LIGO.

Это интересно: Пять фактов, которые мы узнаем, если LIGO обнаружит слияние нейтронных звезд

Напомним, что в ядре детекторов LIGO находятся лазерные интерферометры километрового масштаба, которые измеряют расстояние между 40-килограммовыми подвесными зеркалами с наилучшей точностью, когда-либо достигнутой. Беспрецедентный уровень чувствительности LIGO достигается благодаря самой современной технике, необходимой для подавления вибрационных и тепловых шумов в детекторах. Именно на таких уровнях чувствительности в игру вступает квантовая механика: исследователи использовали давление света на зеркала и количество фотонов в лазерном луче. Важное значение здесь имеет положение зеркал, так как только первая из двух величин оказывает на них влияние.

Проект LIGO был предложен в 1992 году Кипом Торном, Рональдом Древером из Калифорнийского технологического института и Райнером Вайссом из Массачусетского технологического института.

Важно понимать, что законы квантовой механики лежат в основе современных технологий включая компьютер, смартфон и любой электроприбор. Мы знаем, что квантовые законы работают.

Таким образом, исследователям удалось доказать, что квантовый шум LIGO это неопределенность в давлении света. Все вышеперечисленное означает, что на полигоне LIGO физики смогли заглянуть ниже так называемого стандартного квантового предела предела, когда в измерениях используются только естественные квантовые состояния.

В эксперименте использовался неклассический «сжатый свет», который уменьшает квантовые флуктуации лазерного поля. Всего несколько лет назад этот тип квантового поведения был бы слишком слаб, чтобы его можно было наблюдать. Но новые методы измерения позволяют раздвинуть горизонты физики, а будущие усовершенствования и модернизация инструментов позволят добиться улучшенной чувствительности уже имеющихся приборов. Это означает, что в будущем мы сможем создавать гравитационно-волновые технологии, которые позволят более детально проникать в пространство-время и открывать головокружительные тайны Вселенной. Так что нас с вами ждет череда увлекательных научных открытий.

Подробнее..

Что такое гравитационные волны. Когда и как их открыли

22.08.2020 18:09:09 | Автор: admin

Понимание гравитационных волн может дать нам что-то большее, чем просто сами эти волны.

Когда кто-то говорит что-то про гравитационные волны, многим остается только недоумевать и не понимать, что это вообще такое. Если вы этого не знали, расслабьтесь — даже ученые не могут дать на это развернутый ответ. Конечно, в целом они понимают, что это такое и откуда берется, но белые пятна в этой истории все равно еще остаются. Даже то, что несколько лет назад их смогли зафиксировать, не дает развернутого ответа на вопрос, что же это такое. Все из-за того, что они появляются в далеком космосе и уже потом доходят до нас. Примечательно, что предсказал их существование еще Альберт Эйнштейн, а современные ученые только сейчас начинают подбираться к их разгадке. Понимание того, откуда они берутся и что из себя представляют, пусть и примерное, очень интересно. Попробуем рассказать об этом попроще и без лишних сложных формул.

Что такое гравитационные волны

Если говорить грубо, то гравитационные волны — это небольшие искажения пространства и времени. Что-то типа ряби. Причиной их появления становятся события, которые происходят далеко в космосе и имеют действительно эпические масштабы.

О существовании гравитационных волн знали довольно давно, так как еще в 1915 году о них рассказал Альберт Эйнштейн, но одно дело знать, а совсем другое — доказать, показать и объяснить. Этим ученые и занимались почти 100 лет.

Считается, что гравитационные волны, которые были зафиксированы лазерными интерферометрами гравитационно-волновой обсерватории (ЛИГО), образовались от столкновения двух черных дыр, которые превратились в одну большую черную дыру. Зафиксировали гравитационные волны 14 сентября 2015 года.

Лаборатория ЛИГО работает под управлением Калифорнийского технологического института и Массачусетского технологического института. Находится в городах Хэнфорд, штат Вашингтон, и Ливингстон, штат Луизиана, а финансируется за счет средств Национального научного фонда США

Откуда берутся гравитационные волны

Интересно, что событие, которое привело к образованию зафиксированных гравитационных волн, произошло примерно 1,3 миллиарда лет назад, а размер черных дыр, которые тогда столкнулись, был всего в 29 и 36 раз больше нашего Солнца.

Столкновение двух черных дыр вызывает образование гравитационных волн.

Если верить общей теории относительности — а поводов не верить ей становиться все меньше — пара черных дыр, которые вращаются друг вокруг друг друга, уже сами по себе излучают гравитационные волны и тратят на это очень много энергии.

Самые распространенные мифы о гравитации. Что из этого правда?

Сближение черных дыр для столкновения происходит в течение миллиардов лет, но в последние минуты перед столкновением их скорость очень сильно вырастает. В итоге, они ускоряются настолько, что столкновение происходит на скорости равной примерно половине скорости света. Если вспомнить известную формулу, где E=mc2, становится понятно, почему высвобождается так много энергии, если в формуле фигурирует скорость и масса, да еще и в квадрате.

Изучение гравитационных волн

За изучение гравитационных волн даже присуждена нобелевская премия. Получили ее Джозеф Тейлор-младший и Рассел Халс. В 1976 году они обнаружили бинарную систему, в которой орбита пульсара постепенно снижалась со временем и при этом выделялось большое количество энергии. Они смогли доказать, что это и были гравитационные волны. Нобелевскую премию они получили в 1993 году за обнаружение пульсара и объяснение происходящего с ним.

Не надо путать объяснение факта существования гравитационных волн и их обнаружение. ЛИГО именно зафиксировала волны, то есть доказала, что все предыдущие открытия не были ошибкой.

Что такое Общая теория относительности Эйнштейна?

Открытие было сделано далеко не с первой попытки и даже не первой версией ЛИГО. Пришлось сначала провести работы по модернизации до второй версии, которая была намного чувствительнее. Зато гравитационные волны после модернизации были открыты практически сразу, буквально при первом запуске.

Так же одной их причин гравитационных волн называют Большой взрыв.

Работы по модернизации проводились большим количеством исследовательских институтов и лабораторий со всего мира, включая США, Европу и даже Австралию. Изначально финансирование создания ЛИГО началось в 1992 году, хотя впервые подобный проект был предложен группой ученых еще в 1980 году. Многие признавали, что это был большой риск, но все равно верили, что они добьются результата.

На данный момент ЛИГО осуществляет исследования, используя огромное научное сотрудничество (LIGO Scientific Collaboration (LSC)). В группу исследователей входит более 1000 ученых из университетов 15 стран мира.

Что будет, если попасть в черную дыру?

Многие из ученых, которые участвуют в исследованиях, считают открытие гравитационных волн началом новой эры, так как теперь область гравитационно-волновой астрономии стала реальна.

Открытие гравитационных волн позволяет человечеству приступить к исследованиям деформированных частей Вселенной. То есть тех объектов, которые сделаны из искривлений пространства-времени. Столкновение черных дыр и следы этого события являются только началом долгого пути. Главное, что теперь этот путь отрыт и можно идти по нему уверенной поступью.

Большой взрыв мог создать зеркальную антивселенную нашей Вселенной

Как работает LIGO

В основе каждой из двух лабораторий LIGO используется Г-образные интерферометры длиной 4 километра с лазерными лучами, расщепляющимися на два луча, которые движутся туда-сюда внутри трубы. Ее диаметр составляет примерно 1,2 метра и внутри создан почти идеальный вакуум.

Если бы Альберт Эйнштейн сейчас, спустя сто лет после своего открытия увидел бы результаты исследований LIGO, он был бы рад, что оказался прав.

Пучки света нужны для того, чтобы можно было контролировать расстояние между зеркалами, которые расположены в разных концах интерферометра. Теория Эйнштейна гласит, что расстояние между зеркалами будет изменяться на бесконечно малую величину, когда между ними проходит гравитационная волна. Изменения расстояния не должны превышать одной десятитысячной протона. Их-то и надо зафиксировать. Ученые продолжают работать в этом направлении и о самых интересных их открытиях мы расскажем в нашем новостном Telegram-канале.

Ученые обнаружили неизвестный источник гравитационных волн

Обсерватории должны быть именно разнесены на большое расстояние, чтобы определить направление событий, которые и являются причиной гравитационных волн. Заодно так можно убедиться, что волны пришли именно из космоса и не связаны с местными явлениями.

Первое наблюдение гравитационных волн позволило ускорить строительство глобальной сети, состоящей из огромного количества детекторов. Они позволяют не только закрепить результат, но находить еще больше источников гравитационных волн. В будущем это действительно откроет новые возможности, но пока надо подождать и не мешать ученым работать.

Подробнее..

Астрономы впервые увидели свет от столкновения двух черных дыр

04.07.2020 00:06:21 | Автор: admin

Столкновение двух сверхмассивных черных дыр может выглядеть так

Астрономы впервые увидели всплеск света от столкновения двух черных дыр. Объекты встретились находясь на расстоянии 7,5 миллиардов световых лет от Земли. В момент их встречи в вихре горячей материи, вращающейся вокруг более крупной, сверхмассивной черной дыры, началось слияние. Этот водоворот называется аккреционным диском и вращается вокруг горизонта событий черной дыры места в космосе, в котором сила гравитация настолько сильна, что даже фотоны света не могут ее покинуть. Вот почему ученые никогда не видели столкновения двух черных дыр. В отсутствие света идентифицировать такие слияния можно только обнаружив гравитационные волны рябь в пространстве-времени, создаваемой столкновениями массивных объектов.

Эйнштейн был не прав?

Впервые существование гравитационных волн предсказал Альберт Эйнштейн, но он не думал, что их когда-то удастся обнаружить. Они казались слишком слабыми, чтобы уловить их сигнал на Земле среди всего этого шума и вибрации. В течение 100 лет казалось, что Эйнштейн был прав. Но в 2015 году LIGO и VIRGO детекторы гравитационных волн, расположенные в EGO (Европейская гравитационная обсерватория в Вашингтоне и Луизиане) впервые зафиксировали гравитационные волны: сигналы от слияния двух черных дыр на расстоянии около 1,3 миллиардов световых лет от Земли.

Открытие положило начало новой области астрономии и принесло Нобелевскую премию по физике исследователям, которые работали над проектом. На этот раз ученые сравнили столкновение сверхмассивных черных дыр, так как детектор LIGO впервые обнаружил всплеск света, что раньше казалось невозможным, поскольку черные дыры не излучают свет.

Изображение художником быстро вращающейся сверхмассивной черной дыры, окруженной аккреционным диском. Ключевые особенности черных дыр обозначены красным цветом.
(ESO, ESA/Hubble, M. Kornmesser; Business Insider)

Вам будет интересно: Черные дыры можно использовать в качестве источника бесконечной энергии

Исследователи полагают, что сила столкновения двух массивных объектов заставила вновь образовавшуюся черную дыру проскочить через газ аккреционного диска вокруг более крупной черной дыры. В пресс-релизе исследования, опубликованного в журнале Physical Review Letters говорится, что именно реакция газа на ускорение создает яркую вспышку, видимую в телескопы. Команда астрономов Калифорнийского технологического института ожидает увидеть еще один всплеск от той же черной дыры через несколько лет, когда она, согласно прогнозам, снова войдет в аккреционный диск сверхмассивной черной дыры.

Причина, по которой поиск таких всплесков важен, заключается в том, что они помогают в вопросах астрофизики и космологии. Если мы сможем снова обнаружить свет от слияния других черных дыр, то больше узнаем о происхождении этих таинственных объектов.

Соавтор исследования Манси Касливал, доцент астрономии Калифорнийского технологического института.

Оба детектора и LIGO и VIRGO зафиксировали возмущения в пространстве-времени в мае 2019 года. Всего через несколько дней телескопы Паломарской обсерватории недалеко от Сан-Диего заметили яркую вспышку света, исходящую из того же самого места в космосе. Позже исследователи просмотрели архивные изображения этой области неба и заметили всплеск. Вспышка медленно угасала на протяжении месяца. Временная шкала и местоположение совпадали с данными LIGO. В ходе работы команда пришла к выводу, что всплеск, вероятно, является результатом слияния двух черных дыр, однако полностью исключить другие варианты нельзя. Тем не менее, им удалось исключить вероятность того, что всплеск произошел в результате обыкновенных взрывов в аккреционном диске сверхмассивной черной дыры, так как до всплеска, на протяжении 15 лет, диск вел себя относительно спокойно.

С другими теориями о происхождении черных дыр можно ознакомиться на нашем канале в Google News!

Авторы исследования считают, что такие сверхмассивные черные дыры, как эта, постоянно вспыхивают. В то же самое время размер и местоположение этой вспышки впечатляют.

Изучение гравитационных волн

В будущем исследователи ожидают больше подобных открытий. Все потому, что в ближайшие несколько лет должна начать работу новая гравитационно-волновая обсерватория гравитационно-волновой детектор Камиоки (KAGRA). С помощью KAGRA, LIGO и VIRGO ученые рассчитывают сузить поиски местоположения массивных столкновений в три раза. Это также поможет улучшить оборудование телескопов для более точного обнаружения этих событий, вызывающих гравитационные волны и обнаружения испускаемого ими света. Как полагают авторы научной работы, новая глобальная сеть детекторов в конечном итоге может обнаруживать до 100 столкновений в год.

Подробнее..

Категории

Последние комментарии

© 2006-2020, umnikizdes.ru