Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Leather-like material biofabrication using fungi

Abstract

Fungi-derived leather substitutes are an emerging class of ethically and environmentally responsible fabrics that are increasingly meeting consumer aesthetic and functional expectations and winning favour as an alternative to bovine and synthetic leathers. While traditional leather and its alternatives are sourced from animals and synthetic polymers, these renewable sustainable leather substitutes are obtained through the upcycling of low-cost agricultural and forestry by-products into chitinous polymers and other polysaccharides using a natural and carbon-neutral biological fungal growth process. Following physical and chemical treatment, these sheets of fungal biomass visually resemble leather and exhibit comparable material and tactile properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Commercialization (patent) and research trends (publication) relating to the production of paper and other fabrics derived from fungi from 1950–2020.
Fig. 2: Leather-like products produced from fungal mycelium.

Images reproduced with permission from MycoTech (Bandung, Indonesia) (a,c) and Bolt Threads Inc. (Emeryville, United States) (b,d).

Fig. 3: Manufacturing processes.

Similar content being viewed by others

References

  1. China, C. R. et al. Alternative tanning technologies and their suitability in curbing environmental pollution from the leather industry: a comprehensive review. Chemosphere 254, 126804 (2020).

    Article  CAS  Google Scholar 

  2. Qua, F. J. S. (Im)Material: a qualitative study on sustainable materials for design through a comparative review of leather and its modern alternatives. MSc thesis, Massachusetts Institute of Technology (2019).

  3. Gac, A. et al. Co-products from meat processing: the allocation issue. In Proceedings of the 9th International Conference on Life Cycle Assessment in the Agri-Food Sector (eds Schenck, R. & Huizen, D.) 438–442 (American Center for Life Cycle Assessment, 2014).

  4. Kanagaraj, J., Senthilvelan, T., Panda, R. & Kavitha, S. Eco-friendly waste management strategies for greener environment towards sustainable development in leather industry: a comprehensive review. J. Clean. Prod. 89, 1–17 (2015).

    Article  CAS  Google Scholar 

  5. Dixit, S., Yadav, A., Dwivedi, P. D. & Das, M. Toxic hazards of leather industry and technologies to combat threat: a review. J. Clean. Prod. 87, 39–49 (2015).

    Article  CAS  Google Scholar 

  6. Leather Carbon Footprint Review of the European Standard EN 16887:2077 (United Nations Industrial Development Organization, 2017).

  7. Gibb, H. J., Lees, P. S., Pinsky, P. F. & Rooney, B. C. Lung cancer among workers in chromium chemical production. Am. J. Ind. Med. 38, 115–126 (2000).

    Article  CAS  Google Scholar 

  8. Future Trends in the World Leather and Leather Products Industry and Trade (United Nations Industrial Development Organization, 2010).

  9. Baur, X. et al. Respiratory and other hazards of isocyanates. Int. Arch. Occup. Environ. Health 66, 141–152 (1994).

    Article  CAS  Google Scholar 

  10. Bhuvaneswari. G H. in Recycling of Polyurethane Foams (eds Thomas, S. et al.) 29–44 (William Andrew Publishing, 2018).

  11. Otake, Y., Kobayashi, T., Asabe, H., Murakami, N. & Ono, K. Biodegradation of low-density polyethylene, polystyrene, polyvinyl chloride, and urea formaldehyde resin buried under soil for over 32 years. J. Appl. Polym. Sci. 56, 1789–1796 (1995).

    Article  CAS  Google Scholar 

  12. Webster, J. & Weber, R. Introduction to Fungi (Cambridge Univ. Press, 2007).

  13. Kaplan-Bie, J. H. Solution based post-processing methods for mycological biopolymer material and mycological product made thereby. US patent 20,180,282,529 (2018).

  14. Bartnicki-Garcia, S. Cell wall chemistry, morphogenesis, and taxonomy of fungi. Annu. Rev. Microbiol. 22, 87–108 (1968).

    Article  CAS  Google Scholar 

  15. Wessels, J. G. H., Mol, P. C., Sietsma, J. H. & Vermeulen, C. A. in Biochemistry of Cell Walls and Membranes in Fungi (eds Kuhn, P. J. et al.) 81–95 (Springer, 1990).

  16. Madsen, J., Bjerg, B. S., Hvelplund, T., Weisbjerg, M. R. & Lund, P. Methane and carbon dioxide ratio in excreted air for quantification of the methane production from ruminants. Livest. Sci. 129, 223–227 (2010).

    Article  Google Scholar 

  17. Jaiswal, B. & Agrawal, M. in Carbon Footprints (ed. Muthu, S. S.) 81–99 (Springer, 2020).

  18. Lynch, S. A., Mullen, A. M., O’Neill, E., Drummond, L. & Álvarez, C. Opportunities and perspectives for utilisation of co-products in the meat industry. Meat Sci. 144, 62–73 (2018).

    Article  Google Scholar 

  19. Nygren, O. & Wahlberg, J. E. Speciation of chromium in tanned leather gloves and relapse of chromium allergy from tanned leather samples. Analyst 123, 935–937 (1998).

    Article  CAS  Google Scholar 

  20. Geier, J. & Lessmann, H. in Kanerva’s Occupational Dermatology (eds John, S. M. et al.) 2103–2105 (Springer, 2020).

  21. Marconi, M., Marilungo, E., Papetti, A. & Germani, M. Traceability as a means to investigate supply chain sustainability: the real case of a leather shoe supply chain. Int. J. Prod. Res. 55, 6638–6652 (2017).

    Article  Google Scholar 

  22. Omoloso, O., Wise, W. R., Mortimer, K. & Jraisat, L. Corporate sustainability disclosure: a leather industry perspective. Emerg. Sci. J. 4, 44–51 (2020).

    Article  Google Scholar 

  23. Butcher, B. T., Salvaggio, J. E., Weill, H. & Ziskind, M. M. Toluene diisocyanate (TDI) pulmonary disease: immunologic and inhalation challenge studies. J. Allergy Clin. Immunol. 58, 89–100 (1976).

    Article  CAS  Google Scholar 

  24. Lacy, P. The flammability and heat resistance of natural and synthetic leathers. J. Coat. Fabr. 5, 186–203 (1976).

    Article  CAS  Google Scholar 

  25. Kim, B., Park, J.-H., Hwang, G., Jun, M.-S. & Choi, K. Eutrophication of reservoirs in South Korea. Limnology 2, 223–229 (2001).

    Article  CAS  Google Scholar 

  26. Khan, M. N. & Mohammad, F. in Eutrophication: Causes, Consequences and Control (eds Ansari, A. A. & Gill, S. S.) 1–15 (Springer, 2014).

  27. Gupta, S., Gupta, R. & Tamra, R. Challenges Faced by Leather Industry in Kanpur (Indian Institute of Technology, Kanpur, 2007); http://home.iitk.ac.in/~sgupta/tannery_report.pdf

  28. Mascianà, P. World Statistical Compendium for Raw Hides and Skins, Leather and Leather Footwear (Food and Agricultural Organization of the United Nations, 2015).

  29. Pringle, T., Barwood, M. & Rahimifard, S. The Challenges in achieving a circular economy within leather recycling. Procedia CIRP 48, 544–549 (2016).

    Article  Google Scholar 

  30. Kahsay, T., Negash, G., Hagos, Y. & Hadush, B. Pre-slaughter, slaughter and post-slaughter defects of skins and hides at the Sheba Tannery and Leather Industry, Tigray region, northern Ethiopia. Onderstepoort J. Vet. Res. 82, 01–07 (2015).

    Article  CAS  Google Scholar 

  31. García, C. & Prieto, M. A. Bacterial cellulose as a potential bioleather substitute for the footwear industry. Microb. Biotechnol. 12, 582–585 (2019).

    Article  Google Scholar 

  32. Kavanagh, K. Fungi: Biology and Applications (John Wiley & Sons, 2005).

  33. Bamba, Y., Ogawa, Y., Saito, T., Berglund, L. A. & Isogai, A. Estimating the strength of single chitin nanofibrils via sonication-induced fragmentation. Biomacromolecules 18, 4405–4410 (2017).

    Article  CAS  Google Scholar 

  34. Dhyani, V. & Bhaskar, T. in Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels (eds Pandey, A. et al.) 217–244 (Academic Press, 2019).

  35. Conkey, W. H., Van Horn, W. M., Shema, B. F. & Shockley, W. H. Sheets comprising filaments of fungi. US patent 2,811,442 (1957).

  36. Dschida, W. J. A. Fungal cell wall production and utilization as a raw resource for textiles. US patent 5,854,056 (1998).

  37. Hamlyn, P. in Textile Technology International (eds Glasman, I. & Lennox-Kerr, P.) 254–257 (Sterling Publications Ltd, 1991).

  38. Hamlyn, P. F. & Schmidt, R. J. Potential therapeutic application of fungal filaments in wound management. Mycologist 8, 147–152 (1994).

    Article  Google Scholar 

  39. Carlson, J. A., Johnson, M. A., Einspahr, D. W. & Swanson, J. W. Utilization of Pulp Mill Effluent in the Production of Papermaking Mycelia (The Institute of Paper Chemistry, 1972); https://go.nature.com/2CplEuK

  40. Johnson, M. A. & Carlson, J. A. Mycelial paper: a potential resource recovery process? Biotechnol. Bioeng. 20, 1063–1084 (1978).

    Article  CAS  Google Scholar 

  41. Yamanaka, S. & Kikuchi, R. Complex of fibers and fungi and a process for preparation thereof. US patent 5,074,959 (1991).

  42. Rice, M. A kitchen-variety approach to fine paper from mushrooms. Mushroom: J. Wild Mushroom. 10, 21–22 (1991).

    Google Scholar 

  43. King, A. & Watling, R. Paper made from bracket fungi. Mycologist 11, 52–54 (1997).

    Article  Google Scholar 

  44. Su, C.-H. et al. Development of fungal mycelia as a skin substitute: characterization of keratinocyte proliferation and matrix metalloproteinase expression during improvement in the wound-healing process. J. Biomed. Mater. Res. A 72, 220–227 (2005).

    Article  CAS  Google Scholar 

  45. Su, C.-H. et al. Fungal mycelia as the source of chitin and polysaccharides and their applications as skin substitutes. Biomaterials 18, 1169–1174 (1997).

    Article  CAS  Google Scholar 

  46. Jones, M. P., Kujundzic, M., John, S. & Bismarck, A. Crab vs. mushroom: a review of crustacean and fungal chitin in wound treatment. Mar. Drugs 18, 64 (2020).

    Article  CAS  Google Scholar 

  47. Mazur, R. Mechanical Properties of Sheets Comprised of Mycelium- A Paper Engineering Perspective, BSc thesis, SUNY College of Environmental Science and Forestry (2015).

  48. Haneef, M. et al. Advanced materials from fungal mycelium: fabrication and tuning of physical properties. Sci. Rep. 7, 41292 (2017).

    Article  CAS  Google Scholar 

  49. Jones, M. et al. Waste-derived low-cost mycelium nanopapers with tunable mechanical and surface properties. Biomacromolecules 20, 3513–3523 (2019).

    Article  CAS  Google Scholar 

  50. Nawawi, W. et al. Nanomaterials derived from fungal sources - is it the new hype? Biomacromolecules 21, 30–55 (2020).

    Article  CAS  Google Scholar 

  51. Nawawi, W., Lee, K.-Y., Kontturi, E., Murphy, R. & Bismarck, A. Chitin nanopaper from mushroom extract: natural composite of nanofibres and glucan from a single bio-based source. ACS Sustain. Chem. Eng. 7, 6492–6496 (2019).

    Article  CAS  Google Scholar 

  52. Syifa, Z. & Fazli, W. M. Biodegradable mushroom-based transparent paper. Res. Commun. Eng. Sci. Technol. 1, 25–25 (2018).

    Google Scholar 

  53. Islam, M., Tudryn, G., Bucinell, R., Schadler, L. & Picu, R. Morphology and mechanics of fungal mycelium. Sci. Rep. 7, 13070 (2017).

    Article  CAS  Google Scholar 

  54. Janesch, J. et al. Mushroom-derived chitosan-glucan nanopaper filters for the treatment of water. React. Funct. Polym. 146, 104428 (2019).

    Article  CAS  Google Scholar 

  55. Greetham, L., McIntyre, G. R., Bayer, E., Winiski, J. & Araldi, S. Mycological biopolymers grown in void space tooling. US patent 20,150,033,620 (2015).

  56. Ross, P., Wenner, N. & Moorleghen, C. Method of producing fungal materials and objects made therefrom. US patent 20,180,014,468 (2018).

  57. Liu, J. & He, W. Method for biologically and ultrasonically preparing textile fibers. Chinese patent 106,758,447 (2018).

  58. Bayer, E. et al. Open-cell mycelium foam and method of making same. US patent 20,190,390,156 (2019).

  59. Chase, J., Ross, P., Wenner, N. & Morris, W. Fungal composites comprising mycelium and an embedded material. US patent 20,190,390,399 (2019).

  60. Chase, J., Wenner, N., Ross, P. & Todd, M. Deacetylation and crosslinking of chitin and chitosan in fungal materials and their composites for tunable properties. US patent 20,190,284,307 (2019).

  61. Ross, P. et al. Mycelium growth bed. US patent 20,200,120,880 (2020).

  62. Scullin, M., Wenner, N., Chase, J., Miller, Q. & Ross, P. Penetration and adhesion of finishes for fungal materials through solubilization, emulsion, or dispersion in water-soluble materials and the use of surfactants. International patent 2,020,087,033 (2020).

  63. Scullin, M. L., Chase, J., Wenner, N., Miller, Q. & Ross, P. Mycelium with reduced coefficient of friction and abrasion resistance through mechanical alteration of mycelial surface microstructure. US patent 20,200,025,672 (2020).

  64. Pelkmans, J. F. et al. Transcription factors of Schizophyllum commune involved in mushroom formation and modulation of vegetative growth. Sci. Rep. 7, 310 (2017).

    Article  CAS  Google Scholar 

  65. Chang, J. et al. Modified recipe to inhibit fruiting body formation for living fungal biomaterial manufacture. PLoS ONE 14, e0209812 (2019).

    Article  Google Scholar 

  66. Raimbault, M. General and microbiological aspects of solid substrate fermentation. Electron. J. Biotechnol. 1, 26–27 (1998).

    Article  Google Scholar 

  67. Viniegra-González, G. et al. Advantages of fungal enzyme production in solid state over liquid fermentation systems. Biochem. Eng. J. 13, 157–167 (2003).

    Article  Google Scholar 

  68. Jones, M. et al. Agricultural by-product suitability for the production of chitinous composites and nanofibers. Process Biochem. 80, 95–102 (2019).

    Article  CAS  Google Scholar 

  69. Weiland, K. et al. Waste-derived nanocellulose-chitin hybrid materials with tunable physical properties. In 22nd International Conference on Composite Materials (ed. Wang, C.) 4750–4756 (2019).

  70. Liao, J. & Huang, H. Extraction of a novel fungal chitin from Hericium erinaceus residue using multistep mild procedures. Int. J. Biol. Macromol. 156, 1279–1286 (2020).

    Article  CAS  Google Scholar 

  71. Naseri, N., Mathew, A. P., Girandon, L., Fröhlich, M. & Oksman, K. Porous electrospun nanocomposite mats based on chitosan–cellulose nanocrystals for wound dressing: effect of surface characteristics of nanocrystals. Cellulose 22, 521–534 (2015).

    Article  CAS  Google Scholar 

  72. Naseri, N. et al. Electrospun chitosan-based nanocomposite mats reinforced with chitin nanocrystals for wound dressing. Carbohydr. Polym. 109, 7–15 (2014).

    Article  CAS  Google Scholar 

  73. Falamarzpour, P., Behzad, T. & Zamani, A. Preparation of nanocellulose reinforced chitosan films, cross-linked by adipic acid. Int. J. Mol. Sci. 18, 396 (2017).

    Article  CAS  Google Scholar 

  74. Ross, P. Monokaryon mycelial material and related method of production. International patent 2,020,086,907 (2020).

  75. Wösten, H. A. Filamentous fungi for the production of enzymes, chemicals and materials. Curr. Opin. Biotechnol. 59, 65–70 (2019).

    Article  CAS  Google Scholar 

  76. Pegler, D. Useful fungi of the world: Amadou and Chaga. Mycologist 4, 153–154 (2001).

    Article  Google Scholar 

  77. Papp, N., Rudolf, K., Bencsik, T. & Czégényi, D. Ethnomycological use of Fomes fomentarius (L.) Fr. and Piptoporus betulinus (Bull.) P. Karst. in Transylvania, Romania. Genet. Resour. Crop Evol. 64, 101–111 (2017).

    Article  Google Scholar 

  78. Jones, M., Huynh, T., Dekiwadia, C., Daver, F. & John, S. Mycelium composites: a review of engineering characteristics and growth kinetics. J. Bionanosci. 11, 241–257 (2017).

    Article  CAS  Google Scholar 

  79. Jones, M., Mautner, A., Luenco, S., Bismarck, A. & John, S. Engineered mycelium composite construction materials from fungal biorefineries: a critical review. Mater. Des. 187, 108397 (2019).

    Article  CAS  Google Scholar 

  80. Elsacker, E., Vandelook, S., Brancart, J., Peeters, E. & De Laet, L. Mechanical, physical and chemical characterisation of mycelium-based composites with different types of lignocellulosic substrates. PLoS ONE 4, e0213954 (2019).

    Article  CAS  Google Scholar 

  81. Malyan, S. K. et al. in Recent Advancement in White Biotechnology Through Fungi (eds Yadav, A. N. et al.) 283–295 (Springer, 2019).

  82. Juan-Ovejero, R., Briones, M. J. I. & Öpik, M. Fungal diversity in peatlands and its contribution to carbon cycling. Appl. Soil Ecol. 146, 103393 (2020).

    Article  Google Scholar 

  83. Solaiman, Z., Abbott, L. K. & Varma, A. (eds) Mycorrhizal Fungi: Use in Sustainable Agriculture and Land Restoration Soil Biology Vol. 41 (Springer 2014).

  84. Zhu, Y.-G. & Miller, R. M. Carbon cycling by arbuscular mycorrhizal fungi in soil–plant systems. Trends Plant Sci. 8, 407–409 (2003).

    Article  CAS  Google Scholar 

  85. Finnigan, T., Lemon, M., Allan, B. & Paton, I. Mycoprotein, life cycle analysis and the food 2030 challenge. Asp. Appl. Biol. 1, 81–90 (2010).

    Google Scholar 

  86. Smetana, S., Mathys, A., Knoch, A. & Heinz, V. Meat alternatives: life cycle assessment of most known meat substitutes. Int. J. Life Cycle Assess. 20, 1254–1267 (2015).

    Article  CAS  Google Scholar 

  87. Silverman, J. Development and Testing of Mycelium-Based Composite Materials for Shoe Sole Applications. MSc thesis, University of Delaware (2018).

  88. López Nava, J. A., Méndez González, J., Ruelas Chacón, X. & Nájera Luna, J. A. Assessment of edible fungi and films bio-based material simulating expanded polystyrene. Mater. Manufact. Process. 31, 1085–1090 (2016).

    Article  CAS  Google Scholar 

  89. Tasca, A. L. & Puccini, M. Leather tanning: Life cycle assessment of retanning, fatliquoring and dyeing. J. Clean. Prod. 226, 720–729 (2019).

    Article  CAS  Google Scholar 

  90. Zábranská, J., Jenicek, P. & Dohányos, M. The determination of anaerobic biodegradability of pharmaceutical wastes by methanogenic activity tests. Water Sci. Technol. 30, 103–107 (1994).

    Article  Google Scholar 

  91. Vilarinho, C., Castro, F., Gonçalves, M. & Fernando, A. L. Wastes: Solutions, Treatments and Opportunities III: Selected Papers from the 5th International Conference Wastes 2019, September 4–6, 2019, Lisbon, Portugal (CRC Press, 2019).

  92. Hyde, K. D. et al. The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers. 97, 1–136 (2019).

    Article  Google Scholar 

  93. Ashby, M. F. in Materials and the Environment (ed. Ashby, M. F.) 459–595 (Butterworth-Heinemann, 2013).

  94. Bucinell, R., Keever, R. & Tudryn, G. A novel tensile specimen configuration for the characterization of bulk mycelium biopolymer. Exp. Tech. 44, 249–258 (2020).

    Article  Google Scholar 

  95. Appels, F. et al. Hydrophobin gene deletion and environmental growth conditions impact mechanical properties of mycelium by affecting the density of the material. Sci. Rep. 8, 4703 (2018).

    Article  CAS  Google Scholar 

  96. Harnagea, F. & Pastina, M. Researches upon mechanical characteristics of different types of leather used in footwear manufacturing. In 3rd International Conference on Advanced Materials and Systems 265–270 (2010).

  97. Harnagea, F. & Secan, C. Researches upon the tensile strength and elongation at break of the leather substitutes. Ann. Oradea Univ. 9, 2 (2010).

    Google Scholar 

  98. Jones, M. et al. Waste-derived low-cost mycelium composite construction materials with improved fire safety. Fire Mater. 42, 816–825 (2018).

    Article  CAS  Google Scholar 

  99. Jones, M. et al. Thermal degradation and fire properties of fungal mycelium and mycelium-biomass composite materials. Sci. Rep. 8, 17583 (2018).

    Article  CAS  Google Scholar 

  100. Jones, M., Bhat, T., Wang, C., Moinuddin, K. & John, S. Thermal degradation and fire reaction properties of mycelium composites. In 21st International Conference on Composite Materials (International Committee on Composite Materials, 2017).

Download references

Acknowledgements

M.J. was sponsored by an Australian Government Research Training Program Scholarship at RMIT University. Funding from the University of Vienna is also acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.J. contributed to the conceptualization, investigation, formal analysis and writing of the original draft. A.G., S.J. and A.B. edited the manuscript. A.B. supervised the project.

Corresponding author

Correspondence to Alexander Bismarck.

Ethics declarations

Competing interests

A.G. has been gainfully employed by Ecovative Design LLC and Mogu S.r.l. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jones, M., Gandia, A., John, S. et al. Leather-like material biofabrication using fungi. Nat Sustain 4, 9–16 (2021). https://doi.org/10.1038/s41893-020-00606-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41893-020-00606-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing