
 
Geochem. Persp. Let. (2018) 9, 1-5 | doi: 10.7185/geochemlet.1829 1

© 2018 The Authors  
Published by the European Association of Geochemistry

Microplastics contaminate the deepest part  
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X. Peng1, M. Chen1,2, S. Chen1*, S. Dasgupta1,  
H. Xu1, K. Ta1, M. Du1, J. Li1, Z. Guo1, S. Bai1

Abstract	 doi: 10.7185/geochemlet.1829

Millions of metric tons of plastics are produced annually and transported from 
land to the oceans. Finding the fate of the plastic debris will help define the 
impacts of plastic pollution in the ocean. Here, we report the abundances of 
microplastic in the deepest part of the world’s ocean. We found that microplastic 
abundances in hadal bottom waters range from 2.06 to 13.51 pieces per litre, 
several times higher than those in open ocean subsurface water. Moreover, micro-
plastic abundances in hadal sediments of the Mariana Trench vary from 200 to 
2200 pieces per litre, distinctly higher than those in most deep sea sediments. 
These results suggest that manmade plastics have contaminated the most remote 
and deepest places on the planet. The hadal zone is likely one of the largest sinks 
for microplastic debris on Earth, with unknown but potentially damaging impacts 
on this fragile ecosystem.
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Letter

Plastics are worldwide marine pollutants, accumulating in 
seawater and sediments (Hammer et al., 2012; Cózar et al., 2014; 
Ivar do Sul and Costa, 2014). It was estimated that between 
4.8 and 12.7 million metric tons of plastic waste entered the 
ocean in 2010 and this mass could increase by one order of 
magnitude by 2025 (Jambeck et al., 2015; Geyer et al., 2017). 
Besides the ocean surface (Thompson et al., 2004; Barnes et al., 
2009; Van Sebille et al., 2015; Chae and An, 2017), potential 
sinks for plastics include deep sea biota (Oliveira et al., 2012), 
the water column (Courtene-Jones et al., 2017; Kanhai et al., 
2018) and sediments (Bergmann et al., 2017), where broken 
plastics exist as microplastics (<5 mm in size) (Arthur et al., 
2009; Hidalgo-Ruz et al., 2012). So far, however, microplastics 
in the deepest ocean remain largely unexplored.

The hadal zone, which is the deepest region (6000-11000 
m) of the oceans lying within trenches, represents 1-2 % of 
the global benthic area (Jamieson et al., 2010). Although it was 
reported that toxic anthropogenic pollutants (e.g., persistent 
organic pollutants) have reached the deepest ocean on Earth 
(Jamieson et al., 2017; Dasgupta et al., 2018), little is known 
about the nature of anthropogenic microplastics in this deep 
and remote environment. To evaluate the abundance, distribu-
tion, and fate of microplastics in the hadal zone, we collected 
bottom water samples and sediment samples at depths of 

2500-11000 m and 5500-11000 m, respectively, from the 
southern Mariana Trench, where the Challenger Deep, the 
deepest point on Earth, is situated (Fujioka et al., 2002) (Fig. 1).

Identification by optical microscope and Raman spec-
trometer confirmed that microplastics are abundant in hadal 
bottom water (Fig. S-1). The microplastics are fibrous, rod-like, 
and roundish in shape, and mostly blue, red, white, green, 
and purple in colour. Plastic microfibres dominate in all the 
microplastics and are commonly 1-3 mm in length in seawater 
samples and mostly 0.1-0.5 mm in sediment samples (Table 
S-4). The microplastic abundances in bottom waters range 
from 2.06 to 13.51 pieces per litre and become more concen-
trated with depth (Fig. 2) with one exception at depth of 6802 
m, reaching 13.51 pieces per litre. At 10903 m, the microplastic 
abundance reaches 11.43 pieces per litre, which is four times 
higher than that reported in the subsurface water of open seas, 
including the NE Pacific Ocean (Desforges et al., 2014), South 
Pacific subtropical gyre (Eriksen et al., 2013), North Pacific Gyre 
(Goldstein, 2012), North Atlantic Ocean (Courtene-Jones et al., 
2017), and the Arctic Ocean (Bergmann et al., 2017; Kanhai 
et al., 2018) (Table 1). The high abundance of microplastics 
in hadal bottom water is also comparable to that reported in 
coastal waters, for example, in the Yangtze River and the Strait 
of Georgia, which are regarded as heavily polluted by micro-
plastics (Desforges et al., 2014; Zhao et al., 2014).

https://en.wikipedia.org/wiki/Ocean
https://en.wikipedia.org/wiki/Oceanic_trench
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Figure 1 	 Sampling location map of Mariana Trench seawater (in red triangles) and sediments (in yellow circles). Please see Tables 
S-1 and S-2 for sampling details. 

Figure 2 	 Profile of microplastic abundances and compositions in water samples from Mariana Trench. Pie charts represent the 
microplastic compositions and numbers in the bracket are the microplastic abundances with units of pieces per litre. PVC-polyvinyl 
chloride, PA-polyamide, Ra-rayon, ABS-acrylonitrile butadiene styrene, PP-polypropylene, PE-polyethylene, PS-polystyrene, aPA-
aromatic polyamide, PET-polyethylene terephthalate, Pe-polyester, PU-polyurethane. The X-axis corresponds to the crossline from 
point A (12 ºN, 142.5 ºE) to point B (9.8 ºN, 141.43 ºE) in Figure 1.
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Figure 3 	 Profile of microplastic abundances and compositions in sediment samples from Mariana Trench. Pie charts represent the 
microplastic compositions and numbers in the bracket are the microplastic abundances with units of pieces per litre. PVC-polyvinyl 
chloride, PA-polyamide, Ra-rayon, ABS-acrylonitrile butadiene styrene, PP-polypropylene, PE-polyethylene, PS-polystyrene, aPA-aro-
matic polyamide, PET-polyethylene terephthalate, Pe-polyester, PU-polyurethane. The X-axis corresponds to the crossline from point 
C (12 ºN, 141.9 ºE) to point D (10.5 ºN, 141.3 ºE) in Figure 1.

Table 1 	 Abundance of microplastics in seawater and sediments 
in open oceans worldwide.

Sample 
type Depth (m) p (pieces)/L Study area References

seawater 2673-10908 2.06-13.51 Mariana Trench This study

seawater 4.50 3.20+0.60 Strait of Georgia Desforges et al. 
(2014)

seawater 1 4.14+2.46 Yangtze estuary Zhao et al. (2014)

seawater 1 0.02 (p/m2) South Pacific 
subtropical gyre

Eriksen et al. 
(2013)

seawater 4.50 0.28+0.18 NE Pacific Ocean Desforges et al. 
(2014)

seawater 2227 0.07 Rockall Trough Courtene-Jones 
et al. (2017)

seawater 50-4369 0.02-0.38 Arctic Central 
Basin

Kanhai et al. 
(2018)

sediment 5108-10908
200-2200 
(0.27-6.20 

p/g)
Mariana Trench This study

sediment 2783-5570
44-3463.71 
(0.04-6.59 

p/g)

HAUSGARTEN 
observatory in 

the Arctic 

Bergmann et al. 
(2017)

sediment 900-1000 28-80 SW Indian 
Ocean 

Woodall et al. 
(2014)

sediment 1400-2200 120-800 NE Atlantic Woodall et al. 
(2014)

sediment 300-1300 200-700 Mediterranean Woodall et al. 
(2014)

sediment 2419-4881 0-40 Polar Front of the 
Southern Ocean

Van 
Cauwenberghe 

et al. (2013)

The colourful microplastics were also widely identified 
in hadal sediments (Fig. 3). Like the bottom water, microfi-
bres were abundant in the sediments (Table S-4). Microplastic 
abundances in hadal sediments ranged from 200 to 2200 
pieces per litre. Higher abundances were commonly found in 
deeper hadal sediments, especially at depths of 7000-11000 
m. The maximum value reached 2200 pieces per litre at the 
depth of 7180 m, followed by 2000 pieces per litre at 9373 m. 
We compared the microplastic abundances of our sediment 
samples with that in deep sea sediments reported from other 
studies (Van Cauwenberghe et al., 2013; Woodall et al., 2014; 
Bergmann et al., 2017) (Table 1). The maximum abundance of 
microplastics detected in the Mariana sediments is twice as 
high as that reported in deep sea sediments from the Atlantic 
Ocean and the Mediterranean Sea (70-800 pieces per litre, 
Woodall et al., 2014), and twenty times more than that in deep 
sea sediments from the SW Indian Ocean and the Southern 
Atlantic (Van Cauwenberghe et al., 2013; Woodall et al., 2014). 
However, it is comparable to Arctic deep sea sediments, where 
the highest abundance of microplastics recorded was 3463.71 
pieces per litre, at a depth of 2783 m (Bergmann et al., 2017).

Eleven different polymers, including polyvinyl chlo-
ride, polyamide, rayon, acrylonitrile butadiene styrene, poly-
propylene, polyethylene, polystyrene, aromatic polyamide, 
polyethylene terephthalate, polyester, and polyurethane were 
identified from the Mariana samples (Fig. 2). Polyethylene 
terephthalate accounted for the largest proportion (19 %) in 
hadal bottom waters, followed by polyamide (14 %), poly-
vinyl chloride (13 %), polyurethane (12 %), polyester (11 %), 
polystyrene (11 %), and rayon (9 %) (Fig. 2). In the sediments, 
polyester accounted for the largest proportion (19 %), followed 
by polypropylene (15 %), polyurethane (14 %), polyamide (12 
%), polyamide (12 %), polyvinyl chloride (10 %), rayon (10 
%), and polyethylene (9 %) (Fig. 3). Microplastic compositions 
from our study are different from those previously reported 
in other deep sea environments. For example, polypropylene 
and polyethylene are most abundant in the water column of 
the North Pacific Ocean (Rios et al., 2007). Polyester, followed 
by acrylic fibres dominate in sediments from the deep NE 
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Atlantic, Mediterranean, and SW Indian Ocean (Woodall 
et  al., 2014), while chlorinated polyethylene, polyamide and 
polypropylene account for 76 % in Arctic sediments (Berg-
mann et al., 2017). Such compositional differences probably 
reflect the differences in the source of microplastics in various 
deep sea areas, and/or the difference in the vertical transport 
processes among various microplastics. Although polymer 
type in this study does not unequivocally establish the source 
of plastic particles, it could provide useful information. All the 
synthetic polymers found in this study could be derived from 
textiles, ropes, fishing gear (nets, lines etc.), plastic beverage 
bottles, and packaging materials (Andrady, 2011; Claessens 
et al., 2011; Napper and Thompson, 2016), while rayon may 
also be used in personal hygiene products and cigarette filters 
(Woodall et al., 2014).

The high abundance of microplastics in Mariana bottom 
water and sediments may be derived from industrialised 
regions in the Northwest Pacific (Jamieson et al., 2017) and 
the North Pacific Subtropical Gyre, so called “Great Pacific 
Garbage Patch” (Kaiser, 2010), where the Pacific surface circu-
lation, i.e. the Eastern Subtropical Mode Water and Subtropical 
Mode Water, may lead to long distance transport of microplas-
tics to Mariana trench, respectively (Tseng et al., 2016). Except 
for polypropylene and polyethylene, all the polymer types 
recorded in this study are negatively buoyant (Andrady, 2011) 
and would eventually sink. Colonisation by organisms, adher-
ence to phytoplankton, and aggregation with organic debris 
and small organic particles will eventually enhance settling 
(Zarfl and Matthies, 2010; Katija et al., 2017). It was reported 
that the vertical transportation rate of surface-derived mate-
rial can be up to 64-78 m per day in the Japan Trench (Oguri, 
2013). A relatively rapid deposition of sediments has also been 
reported in the hadal zone of Mariana Trench (Glud et al., 
2013), probably due to erratic downslope sediment transport 
triggered by occasional earthquakes and/or repeated resus-
pension and deposition of material (Itou et al., 2000), which 
could result in increased accumulation of microplastics in the 
hadal zone. In addition, the narrow V-shaped topography of 
the trench may also enhance the downslope flux of microplas-
tics into the hadal zone (Nunoura et al., 2015). Bottom currents, 
together with propagating internal tides, may further enhance 
the downwelling of particles and foster the accumulation of 
microplastics in the Mariana Trench (Taira et al., 2004; Turne-
witsch et al., 2014).

Our results confirm the presence of microplastics 
throughout the bottom water and sediments of the Southern 
Mariana Trench. We suggest that a part of the ‘missing’ micro-
plastics in the ocean could have been transferred to the deep 
ocean. Given the vastness of the hadal zone and the high 
abundance of microplastics in all of the bottom water and sedi-
ments, the hadal zone could be one of the largest microplastic 
sinks on Earth. It has been demonstrated that microplastics 
could be available to every level of the food web (Cedervall et 
al., 2012; Rillig, 2012; Mattsson et al., 2014; Avio et al., 2017). 
Ingestion of microplastics may result in adverse health effects, 
such as internal blockage and endocrine dysfunction (Wright 
et al., 2013, Kershaw et al., 2015). Recently, microplastics were 
reported to be found in crustaceans from the deep trenches 
(A.J. Jamieson in The Guardian newspaper report by Taylor, 
2017). Further work to evaluate the impacts of microplastics 
on fragile hadal ecosystems is urgently needed in the future.
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