Skip to main content

Advertisement

Log in

Tracking the Rates and Mechanisms of Canopy Damage and Recovery Following Hurricane Maria Using Multitemporal Lidar Data

  • Published:
Ecosystems Aims and scope Submit manuscript

Abstract

Hurricane Maria, a Category 4 storm, snapped and uprooted canopy trees, removed large branches, and defoliated vegetation across Puerto Rico. The magnitude of forest damages and the rates and mechanisms of forest recovery following Maria provide important benchmarks for understanding the ecology of extreme events. We used airborne Lidar data acquired before (2017) and after Maria (2018, 2020) to quantify landscape-scale changes in forest structure along a 439-ha elevational gradient (100–800 m) in the Luquillo Experimental Forest. Damages from Maria were widespread, with 73% of the study area losing ≥ 1 m in canopy height (mean = −7.1 m). Taller forests at lower elevations suffered more damage than shorter forests above 600 m. Yet only 13.5% of the study area had canopy heights ≤ 2 m in 2018, a typical threshold for forest gaps, highlighting the importance of damaged trees and advanced regeneration on post-storm forest structure. Heterogeneous patterns of regrowth and recruitment yielded shorter and more open forests by 2020. Nearly 45% of forests experienced initial height loss > 1 m (2017–2018) followed by rapid height gain > 1 m (2018–2020), whereas 21.6% of forests with initial height losses showed little or no height gain, and 17.8% of forests exhibited no height changes larger than ± 1 m in either period. Canopy layers < 10 m tall accounted for most increases in canopy height and fractional cover between 2018 and 2020, with gains split evenly between height growth and lateral crown expansion by surviving individuals. These findings benchmark rates of gap formation, crown expansion, and canopy closure following hurricane damage and highlight the diversity of ecosystem impacts from heterogeneous spatial patterns and vertical stratification of forest regrowth following a major disturbance event.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data Availability

Lidar data in this study are online at https://gliht.gsfc.nasa.gov. Data files used in the analysis are available from the NGEE Tropics Data Collection at http://dx.doi.org/10.15486/ngt/1797399.

References

  • Asner GP, Brodrick PG, Anderson CB, Vaughn N, Knapp DE, Martin RE. 2015. Progressive forest canopy water loss during the 2012–2015 California drought. Proceedings of the National Academy of Sciences 113(2):E249–E255.

    Google Scholar 

  • Basnet K. 1993. Recovery of a Tropical Rain Forest after Hurricane Damage. Vegetation 109(1):1–4.

    Article  Google Scholar 

  • Bellingham PJ, Tanner E, Healey J. 1994. Sprouting of Trees in Jamaican Montane Forests, after a Hurricane. Journal of Ecology 82(4):747–758.

    Article  Google Scholar 

  • Bellingham PJ, Tanner EVJ, Rich PM, Goodland TCR. 1996. Changes in Light Below the Canopy of a Jamaican Montane Rainforest After a Hurricane. Journal of Tropical Ecology 12(5):699–722.

    Article  Google Scholar 

  • Bessette-Kirton EK, Cerovski-Darriau C, Schulz WH, Coe JA, Kean JW, Godt JW, Thomas MA. 2019. Landslides triggered by hurricane Maria: An assessment of an extreme event in Puerto Rico. GSA Today 29(6):4–10.

    Article  Google Scholar 

  • Bhatia K, Vecchi G, Murakami H, Underwood S, Kossin J. 2018. Projected Response of Tropical Cyclone Intensity and Intensification in a Global Climate Model. Journal of Climate 31:8281–8303.

    Article  Google Scholar 

  • Boni Vicari M, Disney MI, Wilkes P, Burt A, Calders K, Woodgate W. 2019. New framework for separating leaf and wood in terrestrial LiDAR point clouds. Methods in Ecology and Evolution 10:680–694.

    Article  Google Scholar 

  • Brienen RJW, Phillips OL, Feldpausch TR, Gloor E, Baker TR, Lloyd J, Lopez-Gonzalez G, Monteagudo-Mendoza A, Malhi Y, Lewis SL, Vásquez Martinez R, Alexiades M, Álvarez Dávila E, Alvarez-Loayza P, Andrade A, Aragão LEOC, Araujo-Murakami A, Arets EJMM, Arroyo L, Aymard GA, Bánki OS, Baraloto C, Barroso J, Bonal D, Boot RGA, Camargo JLC, Castilho CV, Chama V, Chao KJ, Chave J, Comiskey JA, Cornejo Valverde F, da Costa L, de Oliveira EA, Di Fiore A, Erwin TL, Fauset S, Forsthofer M, Galbraith DR, Grahame ES, Groot N, Hérault B, Higuchi N, Honorio Coronado EN, Keeling H, Killeen TJ, Laurance WF, Laurance S, Licona J, Magnussen WE, Marimon BS, Marimon-Junior BH, Mendoza C, Neill DA, Nogueira EM, Núñez P, Pallqui Camacho NC, Parada A, Pardo-Molina G, Peacock J, Peña-Claros M, Pickavance GC, Pitman NCA, Poorter L, Prieto A, Quesada CA, Ramírez F, Ramírez-Angulo H, Restrepo Z, Roopsind A, Rudas A, Salomão RP, Schwarz M, Silva N, Silva-Espejo JE, Silveira M, Stropp J, Talbot J, ter Steege H, Teran-Aguilar J, Terborgh J, Thomas-Caesar R, Toledo M, Torello-Raventos M, Umetsu RK, van der Heijden GMF, van der Hout P, Guimarães Vieira IC, Vieira SA, Vilanova E, Vos VA, Zagt RJ. Long-term decline of the Amazon carbon sink. Nature 519: 344–348.

  • Brokaw NVL. 1998. Cecropia schreberiana in the Luquillo Mountains of Puerto Rico. Botanical Review 64:91–120.

    Article  Google Scholar 

  • Brokaw NVL. 1982. The Definition of Treefall Gap and Its Effect on Measures of Forest Dynamics. Biotropica 14:158–160.

    Article  Google Scholar 

  • Brokaw NVL, Grear J. 1991. Forest Structure Before and After Hurricane Hugo at Three Elevations in the Luquillo Mountains, Puerto Rico. Biotropica 23(4):386–392.

    Article  Google Scholar 

  • Canham CD, Thompson J, Zimmerman JK, Uriarte M. 2010. Variation in Susceptibility to Hurricane Damage as a Function of Storm Intensity in Puerto Rican Tree Species. Biotropica 42:87–94.

    Article  Google Scholar 

  • Chen Y, Randerson JT, Morton DC. 2015. Tropical North Atlantic ocean-atmosphere interactions synchronize forest carbon losses from hurricanes and Amazon fires. Geophysical Research Letters 42:6462–6470.

    Article  CAS  Google Scholar 

  • Comita LS, Uriarte M, Thompson J, Jonckheere I, Canham CD, Zimmerman JK. 2009. Abiotic and biotic drivers of seedling survival in a hurricane-impacted tropical forest. Journal of Ecology 97:1346–1359.

    Article  Google Scholar 

  • Cook BD, Corp LA, Nelson RF, Middleton EM, Morton DC, McCorkel JT, Masek JG, Ranson KJ, Ly V, Montesano PM. 2013. NASA Goddard’s LiDAR, Hyperspectral and Thermal (G-LiHT) Airborne Imager. Remote Sensing 5(8):4045–4066.

    Article  Google Scholar 

  • Dietze MC, Clark JS. 2008. Changing the gap dynamics paradigm: vegetative regeneration control on forest response to disturbance. Ecological Monographs 78:331–347.

    Article  Google Scholar 

  • Drew AP, Boley JD, Zhao YH, Johnston MH, Wadsworth FH. 2009. Sixty-two years of change in subtropical wet forest structure and composition at El Verde, Puerto Rico. Interciencia 34:34–40.

    Google Scholar 

  • Eitel JUH, Höfle B, Vierling LA, Abellán A, Asner GP, Deems JS, Glennie CL, Joerg PC, LeWinter AL, Magney TS, Mandlburger G, Morton DC, Müller J, Vierling KT. 2016. Beyond 3-D: The new spectrum of LiDAR applications for earth and ecological sciences. Remote Sensing of Environment 186:372–392.

    Article  Google Scholar 

  • Emanuel KA. 2013. Downscaling CMIP5 climate models shows increased tropical cyclone activity over the 21st century. Proceedings of the National Academy of Sciences 110(30):12219–12224.

    Article  CAS  Google Scholar 

  • Everham EM, Brokaw NVL. 1996. Forest Damage and Recovery from Catastrophic Wind. The Botanical Review 62:113–185.

    Article  Google Scholar 

  • Espírito-Santo FDB, Gloor M, Keller M, Malhi Y, Saatchi S, Nelson B, Oliveira Junior RC, Pereira C, Lloyd J, Frolking S, Palace M, Shimabukuro YE, Duarte V, Mendoza AM, López-González G, Baker TR, Feldpausch TR, Brienen RJW, Asner GP, Boyd DS, Phillips OL. 2014. Size and frequency of natural forest disturbances and the Amazon forest carbon balance. Nature Communications 5:3434.

    Article  PubMed  CAS  Google Scholar 

  • Feng Y, Negrón-Juárez R I, Chambers JQ. 2020. Remote sensing and statistical analysis of the effects of hurricane María on the forests of Puerto Rico. Remote Sensing of Environment 247: 111940.

  • Ferraz A, Saatchi S, Mallet C, Meyer V. 2016. LiDAR detection of individual tree size in tropical forests. Remote Sensing of Environment 183:318–333.

    Article  Google Scholar 

  • Ferraz A, Saatchi SS, Longo M, Clark DB. 2020. Tropical tree size–frequency distributions from airborne LiDAR. Ecological Applications 30(7): e02154.

  • Fischer R, Bohn F, de Paula MD, Dislich C, Groeneveld J, Gutiérrez AG, Kazmierczak M, Knapp N, Lehmann S, Paulick S, Pütz S, Rödig E, Taubert F, Köhler P, Huth A. 2016. Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests. Ecological Modelling 326:124–133.

    Article  CAS  Google Scholar 

  • Fisher RA, Koven CD, Anderegg WRL, Christoffersen BO, Dietze MC, Farrior CE, Holm JA, Hurtt GC, Knox RG, Lawrence PJ, Lichstein JW, Longo M, Matheny AM, Medvigy D, Muller-Landau HC, Powell TL, Serbin SP, Sato H, Shuman JK, Smith B, Trugman AT, Viskari T, Verbeeck H, Weng E, Xu C, Xu X, Zhang T, Moorcroft PR. 2018. Vegetation demographics in Earth System Models: A review of progress and priorities. Global Change Biology 24:35–54.

    Article  PubMed  Google Scholar 

  • Frangi J, Lugo A. 1991. Hurricane Damage to a Flood Plain Forest in the Luquillo Mountains of Puerto Rico. Biotropica 23(4):324–335.

    Article  Google Scholar 

  • González G, Waide RB, Willig MR. 2013. Advancements in the understanding of spatiotemporal gradients in tropical landscapes: a Luquillo focus and global perspective. Ecological Bulletins 54:245–250.

    Google Scholar 

  • Gould WA, González G, Carrero Rivera G. 2006. Structure and composition of vegetation along an elevational gradient in Puerto Rico. Journal of Vegetation Science 17:563–574.

    Article  Google Scholar 

  • Hall J, Muscarella R, Quebbeman A, Arellano G, Thompson J, Zimmerman JK, Uriarte M. 2020. Hurricane-Induced Rainfall is a Stronger Predictor of Tropical Forest Damage in Puerto Rico Than Maximum Wind Speeds. Scientific Reports 10:4318.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hoyos CD, Agudelo PA, Webster PJ, Curry JA. 2006. Deconvolution of the factors contributing to the increase in global hurricane intensity. Science 312:94–97.

    Article  CAS  PubMed  Google Scholar 

  • Hu T, Smith RB. 2018. The Impact of Hurricane Maria on the Vegetation of Dominica and Puerto Rico Using Multispectral Remote Sensing. Remote Sensing 10:827.

    Article  Google Scholar 

  • Hunter MO, Keller M, Morton D, Cook B, Lefsky M, Ducey M, Saleska S, Oliveira RC, Schietti J. 2015. Structural Dynamics of Tropical Moist Forest Gaps. PLoS ONE 10(7):0132144.

    Article  CAS  Google Scholar 

  • Ibanez T, Keppel G, Menkes C, Gillespie TW, Lengaigne M, Mangeas M, Rivas-Torres G, Birnbaum P. 2018. Globally consistent impact of tropical cyclones on the structure of tropical and subtropical forests. Journal of Ecology 107:279–292.

    Article  Google Scholar 

  • Kellner JR, Asner GP. 2014. Winners and losers in the competition for space in tropical forest canopies. Ecology Letters 17(5):556–562.

    Article  PubMed  Google Scholar 

  • Knutson T, McBride JL, Chan J, Emanuel K, Holland G, Landsea C, Held I, Kossin JP, Srivastava AK, Sugi M. 2010. Tropical cyclones and climate change. Nature Geoscience 3:157–163.

    Article  CAS  Google Scholar 

  • Knutson TR, Sirutis JJ, Zhao M, Tuleya RE, Bender M, Vecchi GA, Villarini G, Chavas D. 2015. Global Projections of Intense Tropical Cyclone Activity for the Late Twenty-First Century from Dynamical Downscaling of CMIP5/RCP4.5 Scenarios. Journal of Climate 28:7203–7224.

    Article  Google Scholar 

  • Knutson T, Camargo SJ, Chan JCL, Emanuel K, Ho CH, Kossin J, Mohapatra M, Satoh M, Sugi M, Walsh K, Wu L. 2020. Tropical Cyclones and Climate Change Assessment: Part II: Projected Response to Anthropogenic Warming. Bulletin of the American Meteorological Society 101:E303–E322.

    Article  Google Scholar 

  • Koven CD, Knox RG, Fisher RA, Chambers JQ, Christoffersen BO, Davies SJ, Detto M, Dietze MC, Faybishenko B, Holm J, Huang M, Kovenock M, Kueppers LM, Lemieux G, Massoud E, McDowell NG, Mueller-Landau HC, Needham JF, Norby RJ, Powell T, Rogers A, Serbin SP, Shuman JK, Swann AL, Varadharajan C, Walker AP, Wright SJ, Xu C. 2020. Benchmarking and parameter sensitivity of physiological and vegetation dynamics using the Functionally Assembled Terrestrial Ecosystem Simulator (FATES) at Barro Colorado Island, Panama. Biogeosciences 17:3017–3044.

    Article  Google Scholar 

  • Leitold V, Keller M, Morton DC, Cook BD, Shimabukuro YE. 2015. Airborne LiDAR-based estimates of tropical forest structure in complex terrain: opportunities and trade-offs for REDD+. Carbon Balance and Management 10(1):3.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Leitold V, Morton DC, Longo M, dos-Santos MN, Keller M, Scaranello M. 2018. El Niño drought increased canopy turnover in Amazon forests. New Phytologist 219(3):959–971.

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Zeng X, Zou X, González G, Wang C, Yang S. 2018. Litterfall Production Prior to and during Hurricanes Irma and Maria in Four Puerto Rican Forests. Forests 9(6):367.

    Article  Google Scholar 

  • Longo M, Saatchi S, Keller M, Bowman K, Ferraz A, Moorcroft PR, Morton DC, Bonal D, Brando P, Burban B, Derroire G, dos-Santos MN, Meyer V, Saleska S, Trumbore S, Vincent G. 2020. Impacts of degradation on water, energy, and carbon cycling of the Amazon tropical forests. Journal of Geophysical Research Biogeosciences 125: e2020JG005677.

  • Lugo AE. 2008. Visible and invisible effects of hurricanes on forest ecosystems: an international review. Austral Ecology 33:368–398.

    Article  Google Scholar 

  • Marvin DC, Asner GP. 2016. Branchfall dominates annual carbon flux across lowland Amazonian forests. Environmental Research Letters 11: 094027.

  • Moorcroft PR, Hurtt GC, Pacala SW. 2001. A method for scaling vegetation dynamics: The Ecosystem Demography model (ED). Ecological Monographs 71(4):557–586.

    Article  Google Scholar 

  • Muscarella R, Kolyaie S, Morton DC, Zimmerman JK, Uriarte M. 2020. Effects of topography on tropical forest structure depend on climate context. Journal of Ecology 108:145–159.

    Article  Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA). 2017. National Hurricane Center, Tropical Cyclone Report: Hurricane Maria. Available online at: https://www.nhc.noaa.gov/data/tcr/AL152017_Maria.pdf. Accessed November 13, 2020.

  • Palace M, Keller M, Silva H. 2008. Necromass production: studies in undisturbed and logged Amazon forests. Ecological Applications 18:873–884.

    Article  PubMed  Google Scholar 

  • Park JY, Muller-Landau HC, Lichstein JW, Rifai SW, Dandois JP, Bohlman SA. 2019. Quantifying Leaf Phenology of Individual Trees and Species in a Tropical Forest Using Unmanned Aerial Vehicle (UAV) Images. Remote Sensing 11(13):1534.

    Article  Google Scholar 

  • Plowright A. 2020. ForestTools: Analyzing Remotely Sensed Forest Data. R package version 0.2.1. Available online at: https://cran.r-project.org/web/packages/ForestTools/ForestTools.pdf. Accessed November 13, 2020.

  • Purves DW, Lichstein JW, Strigul N, Pacala SW. 2008. Predicting and understanding forest dynamics using a simple tractable model. Proceedings of the National Academy of Sciences 105(44):17018–17022.

    Article  CAS  Google Scholar 

  • Quiñones M, Parés-Ramos IK, Gould WA, González G. McGinley K, Ríos P. 2018. El Yunque National Forest Atlas. General Technical Report IITF-GTR-47. San Juan, PR: U.S. Department of Agriculture, Forest Service, International Institute of Tropical Forestry. 63p.

  • R Core Team. 2020. R: A language and environment for statistical computing. v.3.6.2. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

  • Rangel Pinagé E, Keller M, Duffy P, Longo M, dos-Santos MN, Morton DC. 2019. Long-Term Impacts of Selective Logging on Amazon Forest Dynamics from Multi-Temporal Airborne LiDAR. Remote Sensing 11(6):709.

    Article  Google Scholar 

  • Richardson AD, Hufkens K, Milliman T, Aubrecht DM, Chen M, Gray JM, Johnston MR, Keenan TF, Klosterman ST, Kosmala M, Melaas EK, Friedl MA, Frolking S. 2018. Tracking vegetation phenology across diverse North American biomes using PhenoCam imagery. Scientific Data 5:180028.

  • Román MO, Stokes EC, Shrestha R, Wang Z, Schultz L, Carlo EAS, Sun Q, Bell J, Molthan A, Kalb V, Ji C, Seto KC, McClain SN, Enenkel M. 2019. Satellite-based assessment of electricity restoration efforts in Puerto Rico after Hurricane Maria. PLoS ONE 14(6): e0218883.

  • Runkle J, Yetter T. 1987. Treefalls Revisited: Gap Dynamics in the Southern Appalachians. Ecology 68(2):417–424.

    Article  Google Scholar 

  • Scaranello MAS, Keller M, Longo M, dos-Santos MN, Leitold V, Morton DC, Pinagé ER, Espírito-Santo FDB. 2019. Estimation of coarse dead wood stocks in intact and degraded forests in the Brazilian Amazon using airborne LiDAR. Biogeosciences 16(17):3457–3474.

    Article  CAS  Google Scholar 

  • Seidl R, Fernandes PM, Fonseca TF, Gillet F, Jonsson AM, Merganicova K, Netherer S, Arpaci A, Bontemps JD, Bugmann H, Gonzalez-Olabarria JR, Lasch P, Meredieu C, Moreira F, Schelhaas MJ, Mohren F. 2011. Modelling natural disturbances in forest ecosystems: a review. Ecological Modelling 222:903–924.

    Article  Google Scholar 

  • Shiels AB, Zimmerman JK, García-Montiel DC, Jonckheere I, Holm J, Horton D, Brokaw N. 2010. Plant responses to simulated hurricane impacts in a subtropical wet forest, Puerto Rico. Journal of Ecology 98(3):659–673.

    Article  Google Scholar 

  • Shiels AB, González G, Lodge DJ, Willig MR, Zimmerman JK. 2015. Cascading Effects of Canopy Opening and Debris Deposition from a Large-Scale Hurricane Experiment in a Tropical Rain Forest. BioScience 65(9):871–881.

    Article  Google Scholar 

  • Silander SR. 1979. A study of the ecological life history of Cecropia peltata L., an early secondary successional species in the rain forest of Puerto Rico. Thesis (M.S.), University of Tennessee, Institute of Ecology, Knoxville. 94p.

  • Silver WL, Vogt KA. 1993. Fine Root Dynamics Following Single and Multiple Disturbances in a Subtropical Wet Forest Ecosystem. Journal of Ecology 81(4):729–738.

    Article  Google Scholar 

  • Stovall AEL, Shugart H, Yang X. 2019. Tree height explains mortality risk during an intense drought. Nature Communications 10:4385.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanner EVJ, Kapos V, Healey JR. 1991. Hurricane Effects on Forest Ecosystems in the Caribbean. Biotropica 23(4):513–521.

    Article  Google Scholar 

  • Tanner EVJ, Rodriguez-Sanchez F, Healey JR, Holdaway RJ, Bellingham PJ. 2014. Long-term hurricane damage effects on tropical forest tree growth and mortality. Ecology 95:2974–2983.

    Article  Google Scholar 

  • Trenberth KE, Cheng L, Jacobs P, Zhang Y, Fasullo J. 2018. Hurricane Harvey links to ocean heat content and climate change adaptation. Earth’s Future 6:730–744.

    Article  Google Scholar 

  • Uriarte M, Canham CD, Thompson J, Zimmerman JK. 2004. A Neighborhood analysis of tree growth and survival in a hurricane-driven tropical forest. Ecological Monographs 74:591–614.

    Article  Google Scholar 

  • Uriarte M, Canham CD, Thompson J, Zimmerman JK, Brokaw N. 2005. Seedling recruitment in a hurricane driven tropical forest: light limitation, density-dependence and the spatial distribution of parent trees. Journal of Ecology 93:291–304.

    Article  Google Scholar 

  • Uriarte M, Canham CD, Thompson J, Zimmerman JK, Murphy L, Sabat AM, Fetcher N, Haines BL. 2009. Natural disturbance and human land use as determinants of tropical forest dynamics: results from a forest simulator. Ecological Monographs 79:423–443.

    Article  Google Scholar 

  • Uriarte M, Thompson J, Zimmerman JK. 2019. Hurricane Maria tripled stem breaks and doubled tree mortality relative to other major storms. Nature Communications 10:1362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • U.S. Department of Energy (U.S. DOE). 2018. Disturbance and Vegetation Dynamics in Earth System Models; Workshop Report, DOE/SC-0196. Office of Biological and Environmental Research, U.S. Department of Energy Office of Science. Available online at https://tes.science.energy.gov/files/vegetationdynamics.pdf. Accessed November 13, 2020.

  • Van Beusekom AE, Álvarez-Berríos NL, Gould WA, Quiñones M, González G. 2018. Hurricane Maria in the U.S. Caribbean: Disturbance forces, variation of effects, and implications for future storms. Remote Sensing 10:1–14.

    Google Scholar 

  • Van Beusekom AE, González G, Stankavich S, Zimmerman JK, Ramírez A. 2020. Understanding tropical forest abiotic response to hurricanes using experimental manipulations, field observations, and satellite data. Biogeosciences 17(12):3149–3163.

    Article  Google Scholar 

  • Vandermeer J, Mallona M, Boucher D, Yih K, Perfectos I. 1995. Three Years of Ingrowth Following Catastrophic Hurricane Damage on the Caribbean Coast of Nicaragua: Evidence in Support of the Direct Regeneration Hypothesis. Journal of Tropical Ecology 11(3):465–471.

    Article  Google Scholar 

  • Van der Meer PJ, Bongers F. 1996. Patterns of tree-fall and branch-fall in a tropical rain forest in French Guiana. Journal of Ecology 84(1):19–29.

    Article  Google Scholar 

  • Vargas R, Trumbore SE, Allen MF. 2009. Evidence of old carbon used to grow new fine roots in a tropical forest. New Phytologist 182:710–718.

    Article  PubMed  CAS  Google Scholar 

  • Walker L. 1991. Tree Damage and Recovery from Hurricane Hugo in Luquillo Experimental Forest. Puerto Rico. Biotropica 23(4):379–385.

    Article  Google Scholar 

  • Walker LR. 1995. Timing of post-hurricane tree mortality in Puerto Rico. Journal of Tropical Ecology 11:315–320.

    Article  Google Scholar 

  • Weaver PL. 2010. Forest Structure and Composition in the Lower Montane Rain Forest of the Luquillo Mountains, Puerto Rico. Interciencia 35:640–646.

    Google Scholar 

  • Yih K, Boucher D, Vandermeer J, Zamora N. 1991. Recovery of the Rain Forest of Southeastern Nicaragua After Destruction by Hurricane Joan. Biotropica 23(2):106–113.

    Article  Google Scholar 

  • Young T, Hubbell S. 1991. Crown Asymmetry, Treefalls, and Repeat Disturbance of Broad-Leaved Forest Gaps. Ecology 72(4):1464–1471.

    Article  Google Scholar 

  • Zimmerman JK, Everham EM, Waide RB, Lodge DJ, Taylor CM, Brokaw NVL. 1994. Responses of Tree Species to Hurricane Winds in Subtropical Wet Forest in Puerto-Rico: Implications for Tropical Tree Life Histories. Journal of Ecology 82:911–922.

    Article  Google Scholar 

Download references

Acknowledgements

Funding for this study was provided by the US Department of Energy (Terrestrial Ecosystem Science Program, Interagency Agreements with the US Forest Service # 89243018SSC000012 and with NASA # 89243018SSC000013, and support to VL, DCM, and MK from the Next Generation Ecosystem Experiment-Tropics, Office of Biological and Environmental Research). Additional funding was provided by the USDA Forest Service, US Department of Interior (National Institute of Food and Agriculture # 2018–67,030-28,124), and NASA. The USDA Forest Service International Institute of Tropical Forestry, Luquillo LTER, and NASA’s Airborne Science Program provided logistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douglas C. Morton.

Additional information

Author Contributions: DCM and MK conceived the study; VL and DCM designed the analysis; BDC and LAC collected airborne Lidar data; VL and DCM analyzed data; all authors contributed to the interpretation of results and manuscript preparation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leitold, V., Morton, D.C., Martinuzzi, S. et al. Tracking the Rates and Mechanisms of Canopy Damage and Recovery Following Hurricane Maria Using Multitemporal Lidar Data. Ecosystems 25, 892–910 (2022). https://doi.org/10.1007/s10021-021-00688-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10021-021-00688-8

Keywords

Navigation